检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张振亚 杜春梅[1] ZHANG Zhenya;DU Chunmei(Hebei University of Architecture,Zhangjiakou,Hebei 075132,China)
出 处:《计算机应用文摘》2024年第18期62-65,69,共5页
摘 要:针对风电预测中的长时序和精确预测困难等问题,风电预测在平衡能源供需方面具有重要意义。文章提出了一种基于Informer网络结合空洞卷积的多输入多输出预测模型--CCN-Informer。该模型通过改进输入序列的全局信息提取能力,从而提高预测准确性。实验中,空洞卷积用于特征提取,进一步提高了预测精度。模型基于实际风电场数据集进行了训练和测试。大量实验结果表明,所提方法显著提高了平均风电功率的预测精度。Wind power forecasting is of great significance in balancing energy supply and demand,as it addresses the challenges of long-term and accurate forecasting in wind power forecasting.The article proposes a multi input multi output prediction model based on Informer network combined with dilated convolution—CCN—Informer.This model improves prediction accuracy by enhancing the global information extraction capability of the input sequence.In the experiment,dilated convolution was used for feature extraction,further improving the prediction accuracy.The model was trained and tested based on an actual wind farm dataset.Numerous experimental results have shown that the proposed method significantly improves the prediction accuracy of average wind power.
关 键 词:风电功率预测 长序列输入预测 空洞卷积 注意力机制
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7