基于迭代收缩阈值算法的DOA估计方法  

DOA Estimation Method Based on Iterative Shrinkage Threshold Algorithm

在线阅读下载全文

作  者:乔淑慧 王立府 禹秀梅 王鹏[1] QIAO Shuhui;WANG Lifu;YU Xiumei;WANG Peng(School of Mathematics,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学数学学院,山西太原030051

出  处:《测试技术学报》2024年第5期559-566,共8页Journal of Test and Measurement Technology

基  金:国家自然科学基金资助项目(61774137);山西省基础研究计划资助项目(202103021224195,202103021224212,202103021223189,20210302123019);山西省回国留学人员科研资助项目(2020-104,2021-108,2022-149)。

摘  要:针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信号多快拍条件下的DOA估计模型,然后,采用迭代收缩阈值算法解决稀疏重构问题,求解出信号的稀疏系数矩阵,最后,将稀疏矩阵中行向量的范数映射到划分好的网格上,得到DOA估计值。仿真实验结果表明:该方法在低信噪比、小快拍条件下比OMP、 MUSIC和CBF等传统算法拥有更高的DOA估计精度和更强的鲁棒性。Aiming at the problem that the traditional direction of arrival(DOA)estimation algorithm does not have high estimation accuracy under the conditions of low signal-to-noise ratio and small snapshots,a multi-snapshot DOA estimation method based on the iterative shrinkage threshold algorithm for vector hydrophone arrays is proposed.Firstly,the airspace domain is divided into equal angles,and an ultra-complete redundant dictionary is constructed to establish a DOA estimation model based on the multi-fast-beat condition of the signal.Then,the iterative shrinkage threshold algorithm is used to solve the sparse reconstruction problem,and the sparse coefficient matrix of the signal is solved.Finally,the paradigms of the row vectors in the sparse matrix are mapped onto the well-demarcated mesh,and the DOA estimation value is obtained.Simulation experimental results show that the method has higher DOA estimation accu-racy and stronger robustness than traditional algorithms such as OMP,MUSIC and CBF algorithms under low signal-to-noise ratio and small snap conditions.

关 键 词:波达方向(DOA)估计 压缩感知 稀疏重构 迭代收缩阈值算法 矢量水听器 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象