Transforming nanoscale VO_(2)(B) into a scalable sodium-ion electrode  

在线阅读下载全文

作  者:Yunkai Luo Swetha Chandrasekaran Bintao Hu Randy Chen Marcus Worsley Bruce Dunn 

机构地区:[1]Department of Materials Science and Engineering,University of California,Los Angeles,CA 90095,USA [2]Lawrence Livermore National Laboratory,CA 94550,USA

出  处:《Nano Research》2024年第10期8809-8818,共10页纳米研究(英文版)

基  金:supported by Lawrence Livermore National Laboratory under the auspices of the U.S.Department of Energy(No.DE-AC52-07NA27344);provided by the Office of Naval Research(No.N00014-23-1-2667).

摘  要:The intermittent nature of renewable energies requires highly reliable grid-level energy storage approaches.A critical consideration in developing this technology is the areal capacity which determines battery performance and influences the cost of battery technology.Of related importance is finding new ways of developing scalable electrodes.In recent years,threedimensional(3D)printing of conductive scaffolds has emerged as an alternative to overcome the scalability limitations of commercial tape cast electrodes.The research carried out in the current study demonstrates a successful scalability pathway for nanoscale VO_(2)(B),a desirable cathode for sodium-ion batteries which has a nano-flower morphology with a crystallite size<20 nm.By electrodepositing VO_(2)(B)onto a graphene aerogel scaffold,we were able to achieve mass loading of over 100 mg·cm^(-2) and still possess an areal capacity of 10 mAh·cm^(-2) at a current density of 5 mA·cm^(-2).Moreover,after 1000 cycles,these electrodes retained 75% to 80% of their initial capacity.Even at high loading levels,the electrodeposited VO_(2)(B)exhibits pseudocapacitive material signatures such as a box-like voltammetry response,linear galvanostatic response,and no phase change upon lithiation.The scalability of the VO_(2)(B)electrode is demonstrated in a series of experiments which show the areal capacity to scale upon increase in both mass loading and electrode thickness,with only small changes in specific capacity.This study establishes that nanoscale materials can be scaled up to achieve thick electrodes without compromising their electrochemical properties.

关 键 词:nano VO_(2)(B) sodium-ion battery scalable electrodes three-dimensional(3D)printed scaffold additive manufacturing 

分 类 号:TB383[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象