A machine learning-guided design and manufacturing of wearable nanofibrous acoustic energy harvesters  

在线阅读下载全文

作  者:Negar Hosseinzadeh Kouchehbaghi Maryam Yousefzadeh Aliakbar Gharehaghaji Safoora Khosravi Danial Khorsandi Reihaneh Haghniaz Ke Cao Mehmet R.Dokmeci Mohammad Rostami Ali Khademhosseini Yangzhi Zhu 

机构地区:[1]Terasaki Institute for Biomedical Innovation,Los Angeles,CA 91367,USA [2]Department of Textile Engineering,Amirkabir University of Technology(Tehran Polytechnic),Hafez Avenue,1591634311 Tehran,Iran [3]Department of Electrical and Computer Engineering,University of British Columbia,Vancouver,BC V6T1Z4,Canada [4]Chemical Sciences Division,Oak Ridge National Laboratory,Oak Ridge,TN 37831,USA [5]Department of Computer Science,University of Southern California,Los Angeles,CA 90007,USA

出  处:《Nano Research》2024年第10期9181-9192,共12页纳米研究(英文版)

基  金:supported by Amirkabir University of Technology and the Terasaki Institute for Biomedical Innovation;supported by the U.S.DOE,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division.

摘  要:Nanofibrous acoustic energy harvesters(NAEHs)have emerged as promising wearable platforms for efficient noise-to-electricity conversion in distributed power energy systems and wearable sound amplifiers for assistive listening devices.However,their reallife efficacy is hampered by low power output,particularly in the low-frequency range(<1 kHz).This study introduces a novel approach to enhance the performance of NAEHs by applying machine learning(ML)techniques to guide the synthesis of electrospun polyvinylidene fluoride(PVDF)/polyurethane(PU)nanofibers,optimizing their application in wearable NAEHs.We use a feed-forward neural network along with solving an optimization problem to find the optimal input values of the electrospinning(applied voltage,nozzle-collector distance,electrospinning time,and drum rotation speed)to generate maximum output performance(acoustic-to-electricity conversion efficiency).We first prepared a dataset to train the network to predict the output power given the input variables with high accuracy.Upon introducing the neural network,we fix the network and then solve an optimization problem using a genetic algorithm to search for the input values that lead to the maximum energy harvesting efficiency.Our ML-guided wearable PVDF/PU NAEH platform can deliver a maximal acoustoelectric power density output of 829μW/cm^(3) within the surrounding noise levels.In addition,our system can function stably in a broad frequency(0.1-2 kHz)with a high energy conversion efficiency of 66%.Sound recognition analysis reveals a robust correlation exceeding 0.85 among lexically akin terms with varying sound intensities,contrasting with a diminished correlation below 0.27 for words with disparate semantic connotations.Overall,this work provides a previously unexplored route to utilize ML in advancing wearable NAEHs with excellent practicability.

关 键 词:wearable electronics acoustic energy harvester machine learning piezoelectric nanogenerator electrospun nanofiber 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TB383[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象