检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:洪潇 阮国荣 HONG Xiao;RUAN Guorong(Shanghai Construction Decoration Engineering Group Co.,Ltd.,Shanghai 200072,China)
机构地区:[1]上海市建筑装饰工程集团有限公司,上海200072
出 处:《建筑施工》2024年第9期1376-1380,共5页Building Construction
基 金:上海市2022年度“科技创新行动计划”社会发展科技攻关项目(22dz1203600);上海市2022年度“科技创新行动计划”社会发展科技攻关项目子课题(22dz1203605)。
摘 要:通过深度学习和计算机视觉技术的融合应用,结合迁移学习优化神经网络架构,基于目标检测算法,实现对历史建筑清水砖墙劣化损伤特征的自动识别及精确评估。建立清水砖墙劣化特征样本数据库,选用PP-PicoDet算法进行模型训练与特征增量叠加训练,实现对损伤类型、位置和程度的快速且精确的自动识别。相较传统人工勘查模式,大幅提高了作业效率及结果准确性,为历史建筑保护修缮提供了新的智能化高效勘察工具和方法。Automatic identification and accurate evaluation of deterioration features in exposed brick walls of historical buildings are achieved by integrating deep learning with computer vision technology,alongside optimizing the neural network architecture through transfer learning,based on object detection algorithms.A sample database of deterioration characteristics for exposed brick walls is established,and the PP-PicoDet algorithm is employed for model training and incremental feature enhancement.This approach enables rapid and precise automatic identification of damage types,locations,and severity.Compared to traditional manual inspection methods,this significantly enhances operational efficiency and result accuracy,offering a new intelligent and efficient tool and method for the protection and repair of historical buildings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7