检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵遐龄 潘斌 ZHAO Xialing;PAN Bin(Survey and Monitoring Institute of Hydrogeology and Environmental Geology of Hunan Province,Changsha,Hunan 410100,China;Hunan Geological Engineering Survey Institute Company Limited,Zhuzhou,Hunan 412003,China)
机构地区:[1]湖南省水文地质环境地质调查监测所,湖南长沙410100 [2]湖南省地质工程勘察院有限公司,湖南株洲412003
出 处:《北京测绘》2024年第8期1106-1111,共6页Beijing Surveying and Mapping
基 金:湖南省地质院科研项目(HNGSTP202314);湖南省水文地质环境地质调查监测所科研项目(HNSHK202206)。
摘 要:针对大场景点云快速配准对初值要求高的问题,将测站空间位置与三维角点特征作为空间约束信息,改进传统迭代最近邻点法(ICP)配准算法。考虑点云密度与扫描仪的距离关系,结合使用点—点准则与点—线准则进行点云精配准。实例验证结果表明,在4 507万点云场景下,均方根误差(RMSE)达到0.231 1 m,较直接使用ICP算法提高0.352 1 m,较使用采样随机采样一致性算法RANSAC+迭代最近点算法(ICP)方法提高0.119 3 m,时间分别缩短5.87、18.32 s;在843万点云场景下,RMSE达到0.051 6 m,较直接使用ICP算法提高1.052 1 m,较使用RANSAC+ICP方法提高0.266 9 m,时间分别缩短2.10、19.43 s;提取到的有效角点较Harris3D算法提高了34.84%,证明本文算法能够用于大场景散乱点云的快速配准。In response to the high initial value requirement for rapid registration of point clouds in large-scale scenarios,the traditional iterative closest point(ICP)registration algorithm was improved by using the spatial position of the measuring station and three-dimensional(3D)corner point features as spatial constraint information.By considering the relationship between point cloud density and the distance of the scanner,point-to-point criteria and point-to-line criteria were both used for precise point cloud registration.The example verification results show that in a scenario with 45.07 million point clouds,the root mean square error(RMSE)reaches 0.2311 m,which is 0.3521 m higher than that using the ICP algorithm directly and 0.1193 m higher than that using the random sample consensus+ICP(RANSAC+ICP)method.The time is shortened by 5.87 s and 18.32 s,respectively.In the scenario with 8.43 million point clouds,the RMSE reaches 0.0516 m,which is 1.0521 m higher than that using the ICP algorithm directly and 0.2669 m higher than that using the RANSAC+ICP method.The time is shortened by 2.10 s and 19.43 s,respectively.The extracted effective corner points have increased by 34.84%compared to those by using the Harris 3D algorithm,proving that the proposed algorithm can be used for fast registration of scattered point clouds in large-scale scenarios.
关 键 词:大场景点云配准 地面三维激光扫描 三维角点特征 改进ICP算法
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249