Strategic Behavior Analysis and Modeling for Resilient Resource Allocation  

在线阅读下载全文

作  者:Tong LIU Saike HE 

机构地区:[1]University of Chinese Academy of Sciences,Beijing 101408,China [2]China People's Police University,Langfang 065000,China [3]State Key Laboratory of Multimodal Artificial Intelligence Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China

出  处:《Journal of Systems Science and Information》2024年第3期340-359,共20页系统科学与信息学报(英文)

基  金:Supported by the National Natural Science Foundation of China(72293575,71974187)。

摘  要:In an era where power systems face increased cyber threats,social media data,especially public sentiment during outages,emerges as a crucial component for devising defense strategies.We present a methodology that integrates sentiment analysis of social media data with advanced reinforcement learning techniques to tackle uncertain load redistribution cyberattacks.This approach first employs VADER and Support Vector Machine(SVM)sentiment analysis on collected social media data,revealing insightful information about power outages and public sentiment.Proximal Policy Optimization(PPO),a state-of-the-art reinforcement learning method,is then applied in the second stage to leverage these insights,manage outage uncertainty,and optimize defense strategies.The efficacy of this methodology is demonstrated on a modified IEEE 6-bus system.The results underscore our approach's effectiveness in utilizing social media data for a nuanced,targeted response to cyberattacks.This pioneering methodology offers a promising direction for enhancing power grid resilience against cyberattacks and natural disasters,highlighting the value of social media sentiment analysis in power systems security.

关 键 词:disaster management load redistribution cyberattacks reinforcement learning sentiment analysis 

分 类 号:TM73[电气工程—电力系统及自动化] TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象