一种机载LiDAR点云电力线自动化提取和重建方法  

Method of Power Line Automatic Extraction and Reconstruction from Airborne LiDAR Point Cloud

在线阅读下载全文

作  者:李枭 赵利霞 LI Xiao;ZHAO Lixia(Geovis Spatial Technology Co.,Ltd.,Xi'an 710100,China;Henan Xinda Wangyu Technology Co.,Ltd.,Zhengzhou 450000,China)

机构地区:[1]中科星图空间技术有限公司,陕西西安710100 [2]河南信大网御科技有限公司,河南郑州450000

出  处:《测绘与空间地理信息》2024年第9期211-214,224,共5页Geomatics & Spatial Information Technology

摘  要:针对电力线走廊的机载LiDAR点云,提出了一种电力线自动化提取和重建方法。首先构建规则格网DEM,采用相对高程获得远地面点,分析点云空间分布特征对电力线点云进行粗提取,并利用局部高差的区域生长分割算法进行精细提取;其次,采用最小二乘拟合每个分割单元在xoy平面内的直线,分析该直线与对应高程数据的一阶导数变化趋势,利用密度聚类算法实现电力线的自动分段;最后,依据邻接电力线拟合求交点方式检测悬挂点位置,并采用多项式模型重构每根电力线矢量。实验结果表明,该方法能够自动化检测悬挂点位置,提取准确率高、拟合误差低,具有一定的参考价值。A method of power line automatic extraction and reconstruction was proposed based on airborne LiDAR point cloud in power line corridor.Firstly,regular grid DEM is constructed and the relative elevation can be used to obtain the far ground points.The spatial distribution characteristics of point cloud are used to roughly extract the power line point cloud,and the region-growing segmentation algorithm based on local height difference is used for refined extraction;secondly,least-squares method is used to fit a straight line for each segment unit in xoy plane,density-based clustering algorithm is used to automatically segment power line points by analyzing the first derivatives change trend of the line corresponding to elevation data;finally,the position of suspension point is detected by fitting the adjacent power line and calculating their intersecting point,and the vectorized model of each power line is reconstructed by polynomial model.The experimental results show that the method can automatically detect the position of suspension point,and has high accuracy of extraction and low fitting error.It has certain reference value.

关 键 词:电力线提取 区域生长 悬挂点检测 电力线分段 矢量化重建 

分 类 号:P225[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象