自然灾害监测卫星协同任务规划研究  

Research on Natural Disaster Monitoring Satellite Mission Planning

在线阅读下载全文

作  者:李冉 向曼 金岩[3] 薛野[4] LI Ran;XIANG Man;JIN Yan;XUE Ye(Earth Observation System and Data Center CNSA,Beijing 100107,China;University of Electronic Science and Technology of China,Chengdu 611731,China;China Academy of Space Technology,Beijing 100094,China;China Spacesat Co.,Ltd.,Beijing 100081,China)

机构地区:[1]国家航天局对地观测与数据中心,北京100107 [2]电子科技大学,成都611731 [3]中国空间技术研究院,北京100094 [4]中国东方红卫星股份有限公司,北京100081

出  处:《航天返回与遥感》2024年第4期39-47,共9页Spacecraft Recovery & Remote Sensing

摘  要:当前对地观测卫星具有快速、动态、准确等特点,是自然灾害高精度监测的必要手段。然而当前对地观测卫星数量众多,且卫星的主要任务和分辨率也存在较大差异,如何对卫星任务进行合理的调配是自然灾害应急监测的关键。文章在自然灾害监测需求分析的基础上,提出了一种基于时空约束和任务优先级的自然灾害卫星观测规划方法。通过建立卫星任务规划模型,结合贪婪算法和遗传算法分别进行优化,最后使用优化模型进行模拟仿真实验来验证模型的可靠性。结果表明,贪婪算法和遗传算法分别适合于中小区域和大型区域的自然灾害对地观测任务规划。Currently,earth observation satellites have the characteristics of speed,dynamism,and accuracy,making them essential monitoring tools for high-accuracy monitoring of natural disasters.However,there are numerous earth observation satellites with significant differences in their main tasks and resolutions.Rational allocation of satellite tasks is crucial for emergency monitoring of natural disasters.Based on the analysis of the requirements of natural disasters,this study proposes a satellite observation planning method for natural disasters based on temporal and spatial constraints and task priorities.By establishing a satellite planning model and optimizing it through a combination of greedy algorithms and genetic evolution algorithms,this study conducts simulation experiments to verify the reliability of the model.The results indicate that greedy algorithms and genetic evolution algorithms are suitable for the planning of Earth observation tasks for natural disasters in medium-sized and large areas respectively.

关 键 词:卫星任务规划 时空约束 贪婪算法 遗传算法 

分 类 号:V244.21[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象