融合轻量化ASPP和U-Net的遥感影像烤烟种植区域提取  

Flue Cured Tobacco Area Extraction of Remote Sensing Image by Integrating Lightweight ASPP and U-Net

在线阅读下载全文

作  者:郝戍峰 高宇 刘萍 李宇昂 张华栋 任鸿杰 田帅杰 寇文韬 HAO Shufeng;GAO Yu;LIU Ping;LI Yuang;ZHANG Huadong;REN Hongjie;TIAN Shuaijie;KOU Wentao(College of Computer Science and Technology(College of Data Science),Taiyuan University of Technology,Taiyuan,030024,China;College of Software,Taiyuan University of Technology,Taiyuan,030024,China;College of Hydro Science and Engineering,Taiyuan University of Technology,Taiyuan,030024,China;College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan,030024,China)

机构地区:[1]太原理工大学计算机科学与技术学院(大数据学院),太原030024 [2]太原理工大学软件学院,太原030024 [3]太原理工大学水利科学与工程学院,太原030024 [4]太原理工大学机械与运载工程学院,太原030024

出  处:《航天返回与遥感》2024年第4期139-149,共11页Spacecraft Recovery & Remote Sensing

基  金:山西省重点研发计划项目(202102020101004,202202020101007);山西省科学基金青年项目(20210302124168);山西省回国留学人员科研教研资助项目(2024-61)。

摘  要:针对目前遥感影像中烤烟边缘识别效率低且识别精度低等问题,文章提出一种融合轻量化ASPP和U-Net框架的遥感影像烤烟种植区域提取模型。首先,该模型在U-Net编码层和解码层连接处加入轻量化空洞空间金字塔池化模块;其次,该模型将线性整流函数(Rectified Linear Unit,ReLU)替换为ReLU6激活函数,能够在低精度计算时压缩动态范围,从而使算法更具鲁棒性;最后,该模型通过采用形态学孔洞填充构建标签图后处理算法,实现分割结果优化。为验证该模型框架的有效性和适用性,文章采用无人机遥感影像作为实验数据集,构建与传统语义分割模型的对比实验以及消融实验等。实验结果表明,通过与FCN、U-Net、SegNet和DeepLabV3+等传统语义分割算法相比较,文章提出的模型获得了较好的分割效果,其像素准确率和平均交并比分别为93.7%和84.1%。此外,该模型在保证模型精度的情况下,还能够提高模型的计算速度。To address the issues of low efficiency and accuracy for flue cured tobacco area extraction in remote sensing images,we propose a novel tobacco area extraction model with remote sensing images.The proposed model integrates the lightweight ASPP and U-Net framework for improving performance.The model enhances its performance in three ways:1)integrating a lightweight atrous spatial pyramid pooling module at the junction of the U-Net encoding and decoding layers,2)substituting the ReLU activation function with ReLU6,which can compress the dynamic range during low-precision computation and enhance the algorithm's robustness,and 3)optimizing segmentation results by developing a post-processing algorithm that constructs labeled maps through morphological hole filling.To demonstrate the effectiveness of the model,we utilize UAV remote sensing images as the experimental dataset.We also conduct comparative experiments with traditional semantic segmentation models and ablation study of the proposed model.Compared to traditional semantic segmentation algorithms such as FCN,U-Net,SegNet and DeepLabV3+,the proposed method achieves better performance,where the pixel accuracy and the mean intersection over union of the proposed model are 93.7%and 84.1%,respectively.Furthermore,the model enhances computational speed while maintaining the accuracy of segmentation.

关 键 词:烤烟种植区域提取 轻量化空洞空间金字塔池化模块 U型网络 后处理 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置] V19[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象