检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王安莉[1,2,3] 王建玲 张文婷[2,3] 罗海波[1] 杨飞龙[1,4] WANG Anli;WANG Jianling;ZHANG Wenting;LUO Haibo;YANG Feilong(School of Life science,Central South University,Changsha 410013,China;The Third Xiangya Hospital of Central South University,Changsha 410013,China;Key Laboratory of Hunan Provincial General Higher Education Institutions for Medical Information Research(Central South University),Changsha 41001,China;Key Technologies and Application Evaluation of Intelligent Assisted Diagnosis and Treatment in Hunan Engineering Research Center,Changsha 410013,China)
机构地区:[1]中南大学湘雅三医院,长沙410013 [2]中南大学生命科学学院,长沙410013 [3]医学信息研究湖南省普通高等学校重点实验室(中南大学),长沙410013 [4]智能辅助诊疗关键技术及应用评价湖南省工程研究中心,长沙410013
出 处:《科技和产业》2024年第18期270-276,共7页Science Technology and Industry
基 金:湖南省教育厅项目(23A0026)。
摘 要:对我国图书馆人才队伍建设与管理领域进行文本挖掘,揭示该领域研究热点主题。选取中国知网(CNKI)相关文献摘要作为研究语料,运用Python的gensim库构建LDA主题模型,进行文本挖掘,利用困惑度和一致性确定最佳主题数量、计算各主题强度。最终确定10个热点主题数量,其中高校图书馆员培养、图书馆建设与阅读推广、公共图书馆服务、多角度合作、用户需求与满意度这五个主题的主题强度较高,揭示了主题演化趋势。Text mining in the field of library talent team construction and management in China was conducted,in order to revealthe hot research topics in this field.Abstracts from related literature on CNKI(China National Knowledge Infrastructure)were selected as the corpus for this study.The LDA topic model was constructed using the Gensim library in Python to perform text mining.The optimal number of topics was determined based on perplexity and coherence measures,and the strength of each topic was calculated.Ten hot topics are identified,with the cultivation of college librarians,library construction and reading promotion,public library services,multi-angle cooperation,and user needs and satisfaction being the topics with higher strength,reveal trends in topic evolution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15