考虑时变电价及随机电量消耗的电动公交排班研究  

Scheduling of Electricity Buses with Time-of-use Electricity Price and Stochastic Electricity Consumption

在线阅读下载全文

作  者:冯德健 董明[1] 赵蒙 FENG Dejian;DONG Ming;ZHAO Meng(Antai College of Economics and Management,Shanghai Jiao Tong University,Shanghai 200030,China;Institute of Systems Engineering,Dalian University of Technology,Dalian,Liaoning 116024,China)

机构地区:[1]上海交通大学安泰经济与管理学院,上海200030 [2]大连理工大学系统工程研究所,辽宁大连116024

出  处:《工业工程与管理》2024年第4期120-128,共9页Industrial Engineering and Management

基  金:国家自然科学基金(72271161,72331006)。

摘  要:随着电动公交车辆的迅速普及发展及峰谷分时电价政策的出现,电动公交车辆的排班与充电策略优化问题受到学术界和产业界广泛关注。电动公交车辆行驶中耗电量的随机性也给充电策略的制定带来了挑战。首先,构建混合整数规划模型对问题进行系统性刻画;其次,将决策过程分解为排班问题及充电问题,使充电问题独立于电量消耗及排班过程且易于求解;然后,基于分支定价切割算法框架为排班问题设计了快速高效的精确求解算法;最后,结合算例验证了该方法的有效性及高效性。结果表明,本文方法能够准确快速地完成实际规模问题的求解,给电动公交公司的运营管理提供一定决策参考。With the rapid development of electric buses and the emergence of peak-valley time-ofuse electricity pricing policies,the scheduling and charging strategy optimization of electric buses has received extensive attention from academia and industry.The stochasticity of energy consumption in each trip also brings challenges to the formulation of charging strategies.Firstly,a mixed integer programming model was built to describe the problem systematically.Secondly,the decision-making process was decomposed into a scheduling problem and a charging problem to make the charging problem independent of energy consumption and scheduling process and easy to solve.Then,based on the framework of branch price and cut algorithm,an efficient exact algorithm was designed for the scheduling problem.Finally,the effectiveness and efficiency of the method were verified by case studies.The results show that the method can accurately and quickly solve real-scale problems,which can provide decision-making reference for the operation and management of electric bus companies.

关 键 词:电动公交 时变电价 随机电量消耗 排班 分支定价切割 

分 类 号:C934[经济管理—管理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象