检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李海霞 李春霞[1] 杨保军[1] 赵辉[1] 冯力民[1] Li Haixia;Li Chunxia;Yang Baojun;Zhao Hui;Feng Limin(Department of Obstetrics and Gynecology,Beijing Tiantan Hospital of Capital Medical University,Beijing 100070,P.R.China)
机构地区:[1]首都医科大学附属北京天坛医院妇产科,北京100070
出 处:《中国计划生育和妇产科》2024年第9期108-112,共5页Chinese Journal of Family Planning & Gynecotokology
基 金:北京市自然科学基金(项目编号:J200002)。
摘 要:目的探讨宫颈细胞学不能明确意义的非典型鳞状细胞(ASCUS)病理检出≥CIN 2的危险因素,并构建预测模型。方法收集2019年1月至2021年5月宫颈细胞学为ASCUS,且高危型人乳头瘤病毒(HR-HPV)阳性,于首都医科大学附属北京天坛医院行阴道镜检查和宫颈组织学活检的病例,总计312例作为训练集,分析年龄、HR-HPV亚型感染、流产次数与组织学病理的关系,利用多因素Logistic回归构建宫颈病变预测模型,随后以2021年6月至2022年12月收集的316例ASCUS伴HR-HPV的患者作为验证集进行模型验证。结果训练集312例患者中,病理≥CIN 2者93例(29.8%);多因素Logistic回归显示,HPV16阳性和HPV58阳性是ASCUS发生≥CIN 2的独立危险因素。验证结果显示以HPV16、HPV58、HPV33、HPV35、HPV52构建的模型对于预测CIN 2及以上病变有更好的区分度(AUC=0.731)。结论HPV16/58阳性是ASUCS发生≥CIN 2的危险因素;通过预测模型可以筛选ASCUS伴HR-HPV感染的高危患者,为患者的个体化治疗提供一定参考。Objective To investigate the risk factors of pathological detection of≥CIN 2 in patients with atypical squamous cells with unclear significance(ASCUS)in cervical cytology,and to construct a predictive model.Methods During January 2019 to May 2021,312 patients with ASCUS and high⁃risk HPV(HR⁃HPV)infected underwent colposcopy and cervical histological biopsy in Beijing Tiantan Hospital Affiliated to Capital Medical University were collected and analyzed as a training set.The age,HR⁃HPV infection status,the number of abortions and biopsy pathological results were analyzed;multivariate Logistic regression analysis was used to construct the prediction model of cervical lesions.Subsequently,316 ASCUS patients with HR⁃HPV collected from June 2021 to December 2022 were used as the validation set for model validation.Results Among the 312 patients in the training set,93 cases were≥CIN 2(29.8%),multivariate Logistic regression showed that HPV16 and HPV58 were independent risk factors for≥CIN 2 in ASCUS patients.The validation results showed that the model constructed with HPV16,HPV58,HPV33,HPV35,and HPV52 had better discrimination(AUC=0.731)in predicting CIN 2 and above lesions.Conclusion HPV16/58 are risk factors for ASCUS with≥CIN 2.By using predictive model,high⁃risk patients with ASCUS and HR⁃HPV infection can be screened,providing a certain reference for personalized treatment of patients.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166