检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱若冲 ZHU Ruochong(China Mobile Communications Group Jiangsu Co.,Ltd.,Nanjing 210000,China)
机构地区:[1]中国移动通信集团江苏有限公司,江苏南京210000
出 处:《数字通信世界》2024年第9期102-104,共3页Digital Communication World
摘 要:该文首先概述了机器学习算法的基本原理和应用场景。然后以用户行为分析为重点,详细介绍了如何利用机器学习算法对移动通信核心网中的用户行为进行建模和分析。在此基础上,提出了实时优化与响应策略,根据用户行为模型进行动态的网络优化,并采用多种分析和评估指标对实验结果进行衡量。实验结果表明,基于机器学习的用户行为分析和优化调度策略可以显著提高移动通信核心网的网络性能,如提升用户体验感知、提高网络资源使用效率。Firstly,the basic principles and application scenarios of machine learning algorithms are outlined.Next,with a focus on user behavior analysis,a detailed introduction was given on how to use machine learning algorithms to model and analyze user behavior in the mobile communication core network.On this basis,real-time optimization and response strategies were proposed to dynamically optimize the network based on user behavior models.Multiple analysis and evaluation indicators are used to measure the experimental results.The experimental results show that user behavior analysis and optimization scheduling strategies based on machine learning can significantly improve the network performance of mobile communication core networks,such as enhancing user experience perception and improving network resource utilization efficiency.
分 类 号:TN929.53[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117