检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李云松 张智晟 LI Yunsong;ZHANG Zhisheng(College of Electrical Engineering,Qingdao University,Qingdao 266071,China)
出 处:《电工电能新技术》2024年第9期23-32,共10页Advanced Technology of Electrical Engineering and Energy
基 金:国家自然科学基金项目(52077108)。
摘 要:综合能源系统多元负荷之间存在较强的复杂耦合关系,且多元负荷数据具有较强的波动性与随机性。针对上述特点,提出一种基于图神经网络、注意力机制、变分模态分解的多元负荷短期预测模型。首先,对多元负荷数据进行变分模态分解,削弱其波动性与随机性;然后,通过经注意力机制改进的图学习网络建立充分反映多元负荷耦合联系性、负荷与气象间关联性的图结构,并用图预测网络对图结构与多元负荷历史数据进行分析,实现多元负荷预测;最终,结合亚利桑那州立大学的实际数据对所提出模型与其他模型进行对比分析,结果表明,所提出模型具有更高的预测精度。In an integrated energy system,there are complex and strong coupling relationships between the multi-energy loads,and multi-energy loads have strong volatility and randomness.In view of the above characteristics,a multi-energy load short-term forecasting model based on graph neural network,attention mechanism and variational mode decomposition is proposed.Firstly,the variational mode decomposition of multi-energy loads is carried out to weaken the volatility and randomness.Then through the graph learning network improved by the attention mechanism,a graph structure that fully reflects the coupling connection of multi-energy loads and the correlation between multi-energy loads and meteorology is established,and the graph prediction network is used to analyze the graph structure and the historical data of multi-energy loads to realize the prediction of multi-energy loads.Finally,the proposed model is compared with other models based on the actual data of Arizona State University.The results show that the proposed model has higher prediction accuracy.
关 键 词:综合能源系统 多元负荷预测 短期 图神经网络 注意力机制 变分模态分解
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28