Calculating real-time surface deformation for large active surface radio antennas using a graph neural network  

在线阅读下载全文

作  者:Zihan Zhang Qian Ye Li Fu Qinghui Liu Guoxiang Meng 

机构地区:[1]School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China [2]Shanghai Astronomical Observatory,Chinese Academy of Sciences,Shanghai 200030,China

出  处:《Astronomical Techniques and Instruments》2024年第5期267-274,共8页天文技术与仪器(英文)

基  金:supported by the National Key Basic Research and Development Program of China(2021YFC22035-01);the National Natural Science Foundation of China(U1931137).

摘  要:This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible for gravitational deformation but not for temperature-induced deformation.The introduction of this method facilitates real-time calculation of deformation caused both by gravity and temperature.Constructing the surrogate model involves two key steps.First,the gravitational and thermal loads are encoded,which facilitates more efficient learning for the neural network.This is followed by employing a graph neural network as an end-to-end model.This model effectively maps external loads to deformation while preserving the spatial correlations between nodes.Simulation results affirm that the proposed method can successfully estimate the surface deformation of the main reflector in real-time and can deliver results that are practically indistinguishable from those obtained using finite element analysis.We also compare the proposed surrogate model method with the out-of-focus holography method and yield similar results.

关 键 词:Large radio telescope Surface deformation Surrogate model Graph neural network 

分 类 号:P111.44[天文地球—天文学] TN820[电子电信—信息与通信工程] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象