Ameliorative Effects of Paclobutrazol via Physio-Biochemical and Molecular Manifestation in Rice under Water Deficit Stress  

在线阅读下载全文

作  者:Chirag MAHESHWARI Nitin Kumar GARG Archana SINGH Aruna TYAGI 

机构地区:[1]Indian Council of Agricultural Research-Indian Agricultural Research Institute,New Delhi 110012,India [2]Sri Karan Narendra Agricultural University,Jobner,Rajasthan 303329,India

出  处:《Rice science》2024年第5期603-616,I0065,共15页水稻科学(英文版)

摘  要:To comprehensively explore the physio-biochemical and molecular changes of paclobutrazol(PBZ) at the ideal dose under water deficit stress(WDS) conditions, we investigated the effects of 100 mg/kg PBZ applied via drenching on various physio-biochemical and molecular parameters in three rice varieties(N22, IR64, and IR64 DTY1.1) under both mild [75%-80% relative water content(RWC)] and severe(60%-65% RWC) WDS conditions. The results showed that PBZ treatment positively influenced the physio-biochemical parameters, significantly increasing dry matter(16.27%-61.91%), RWC(6.48%-16.34%), membrane stability index(4.37%-10.35%), and total chlorophyll content(8.97%-29.09%) in the rice varieties under both mild and severe WDS. Moreover, PBZ treatment reduced drought susceptibility(0.83-0.95) and enhanced drought tolerance efficiency(60.92%-86.78%), indicating its potential as a stress-mitigating agent. Global methylation analysis revealed changes in DNA methylation patterns, indicating the regulatory influence of PBZ on gene expression. The expression analysis of genes involved in the diversification of geranylgeranyl pyrophosphate towards the biosynthesis of abscisic acid, gibberellin acid, and chlorophyll showed alterations in their expression levels, suggesting the involvement of PBZ in the isoprenoid pathway. Overall, this study provides valuable insights into the potential mechanisms by which PBZ modulates physiological and molecular responses in rice plants under WDS. The findings highlight the importance of PBZ as a promising agent for enhancing drought tolerance in rice and offer valuable information for future research in crop stress management.

关 键 词:RICE PACLOBUTRAZOL drought stress abscisic acid gibberellic acid 

分 类 号:S511[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象