检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高康哲 王凤艳[1] 刘子维 王明常[1] Gao Kangzhe;Wang Fengyan;Liu Ziwei;Wang Mingchang(College of GeoExploration Science and Technology,Jilin University,Changchun 130026,China)
机构地区:[1]吉林大学地球探测科学与技术学院,长春130026
出 处:《吉林大学学报(地球科学版)》2024年第5期1752-1763,共12页Journal of Jilin University:Earth Science Edition
基 金:国家自然科学基金项目(42077242,42171407);自然资源部城市国土资源监测与仿真重点实验室开放基金项目(KF-2020-05-024);吉林省自然科学基金项目(20210101098JC)。
摘 要:全卷积神经网络在遥感图像语义分割中得到了广泛应用,该方法地物分类精度和效率较高,但对地物分布不均匀遥感图像占比较少地物的分类准确率较低。为了提高遥感图像的分类精度,本文通过添加先验知识方法丰富输入数据特征,采用密集链接方式提高上下采样过程中特征的重复利用率,采用可以优化交并比的损失函数Dice Loss和可以提高难分类类别精度的损失函数Focal Loss相加组合作为网络模型的损失函数,采用LayerScale模块加快模型收敛、抑制无用特征、突出有效特征的方式,对U-Net的输入、网络结构、损失函数进行改进,优化语义分割效果。结果表明,基于高分影像数据集(GID)改进的U-Net相较于原始U-Net像素精度、均类像素精度、平均交并比分别提高了0.0233、0.0409、0.0665,提升了地物分类精度,取得了较好的分类效果。Fully convolutional neural network has been widely used in semantic segmentation of remote sensing images,and the accuracy and efficiency of feature classification are high,but for remote sensing images with uneven distribution of features,the accuracy of feature classification is low.In order to improve the classification accuracy of remote sensing images,this paper enriches the input data features by adding priori knowledge methods,uses the dense link method to improve the reuse rate of features in the process of up and down sampling,combines the loss function Dice Loss that can optimize the intersection of union and the Focal Loss that can improve the accuracy of difficult classification categories as the loss function of the network,and uses the LayerScale module to accelerate the model convergence and suppress irrelevant features while emphasizing useful features,improves input,network structure and loss function of U-Net to optimize the effect of semantic segmentation.The results show that,compared with the original U-Net,the improved U-Net based on Gaofen image dataset is improved by 0.0233,0.0409 and 0.0665 in terms of pixel accuracy,average pixel accuracy and mean intersection of union,respectively,which improves the classification accuracy of ground objects and achieves better classification effects.
关 键 词:深度学习 多特征 密集链接 Focal Loss Dice Loss LayerScale模块 改进U-Net 语义分割
分 类 号:TP753[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49