检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐麟 谢启林 Xu Lin;Xie Qi-lin(School of Mathematics and Statistics,Guangdong University of Technology,Guangzhou 510006,China)
机构地区:[1]广东工业大学数学与统计学院,广东广州510006
出 处:《广东工业大学学报》2024年第5期125-128,共4页Journal of Guangdong University of Technology
基 金:广东省自然科学基金资助项目(2021A1515010383,2022A1515010644)。
摘 要:由于Kirchhoff方程在众多物理问题中有着十分重要的应用,其规范解问题在近年来逐渐引起大批学者的研究兴趣。这些研究集中于探讨方程规范解的存在性问题,即在特定质量约束条件下,是否能找到满足方程的解。文章研究了一类带组合非线性项Kirchhoff方程规范解的存在性问题。通过利用变分法中的极小化方法,集中紧性原理和消失引理,证明了在扩散情形下对任意质量约束,方程存在一个规范解。对比已有的结果,文章的结论是对已有相关结果的推广。Due to the significant applications of the Kirchhoff equation in numerous physical problems,the issue of normalized solutions has gradually attracted the research interest of a large number of scholars in recent years.These studies focus on exploring the existence of normalized solutions to equations,specifically,whether solutions that satisfy the equations can be found under certain mass constraint conditions.An investigation is conducted into the existence of normalized solutions for a class of Kirchhoff equations with combined nonlinear terms.By utilizing the minimization method in variational calculus,along with the concentration compactness principle and the vanishing lemma,it has been proven that under diffusion conditions with arbitrary mass constraints,the equation possesses a normalized solution.Comparing with existing results,the conclusions of the research serve as an extension of existing related results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.110.248