检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谌思罕 袁志龙 王晔 孙轶斐 CHEN Sihan;YUAN Zhilong;WANG Ye;SUN Yifei(School of Energy and Power Engineering,Beihang University,Beijing 102206,China;School of Environmental Science and Engineering,Hainan University,Haikou 570228,China;Research Center for Advanced Energy and Carbon Neutrality,Internation Research Institute for Multidisciplinary Science,Beihang University,Beijing 100191,China)
机构地区:[1]北京航空航天大学能源与动力工程学院,北京102206 [2]海南大学环境科学与工程学院,海南海口570228 [3]北京航空航天大学国际交叉科学研究院先进能源与碳中和研究中心,北京100191
出 处:《能源环境保护》2024年第5期127-134,共8页Energy Environmental Protection
基 金:国家自然科学基金资助项目(U23B20166,22206011)。
摘 要:废塑料热解制油(如航空燃料)与合成气(一氧化碳和氢气)是回收利用废塑料的重要途径。原料类型、工况条件等因素对热解产物产生重要影响,这使得热解过程的反应机理较为复杂,需通过大量实验数据探究反应规律,且实验成本高。机器学习具有数据处理量大、便于提炼统计规律的优势,可降低成本与研究难度。因此,基于多种机器学习算法,利用以无催化和分子筛催化剂催化为主体的数据构建模型,对原料热解进行研究。结果表明,在选取的几种模型中,梯度提升回归算法(GBR)对热解油产率的预测具有最好的拟合性能(R^(2)=0.91,RMSE=7.78),而自适应提升算法(AdaBoost)对热解气产率的预测具有最好的拟合性能(R^(2)=0.83,RMSE=6.42),因此用于预测反应条件。通过排列重要性分析与单依赖性分析,在加热速率约为20℃/min、温度为500℃时,油料的产率较高。同时,对热解油产率与反应温度、加热速率和反应时间3个条件进行了双依赖性分析。量化了加热速率、热解温度等反应条件对废塑料热解油气产率的影响,为废塑料回收的生产实践提供了理论基础。The conversion of waste plastics into oil(aviation fuel)and syngas(carbon monoxide and hydrogen)through pyrolysis offers an efficient means of recycling and reusing these plastics.Factors such as feedstock types and working conditions have an important impact on pyrolysis products,which makes the reaction mechanism of pyrolysis process more complex,so it is necessary to explore the reaction nature through a large number of experimental data,and the experimental cost is high.Machine learning has the advantages of large data processing volume and easy extraction of statistical laws,which can reduce costs and research difficulties.A machine-learning approach was applied to utilize data from non-catalytic and molecular sieve catalytic processes and to build a model for analyzing raw material pyrolysis.The Gradient Boosting Regression(GBR)algorithm has the best fitting performance for predicting oil yield(R^(2)=0.91,RMSE=7.78),while the adaptive boosting algorithm(AdaBoost)has the best fitting performance for predicting gas yield(R^(2)=0.83,RMSE=6.42),enabling accurate prediction of reaction conditions.It was found that optimal oil yield occurred at a heating rate of approximately 20℃/min and a temperature of 500℃through importance ranking and single dependency analyses.Additionally,a dual dependency analysis of oil yield with reaction temperature,heating rate,and reaction time was conducted.This study quantified the effects of heating rate,pyrolysis temperature and other reaction conditions on the oil and gas yield of plastic pyrolysis,which provides a theoretical basis for the production practice of waste plastic recycling.
关 键 词:废塑料热解 分子筛催化剂 机器学习 梯度提升算法 依赖性分析
分 类 号:X705[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147