植被冠层可燃物含水率评估方法研究进展  

Research Progress in the EvaluationofFueoistureContent inVegetationCanopy

在线阅读下载全文

作  者:韩冰洁 叶江霞 Han Bingjie;Ye Jiangxia(Forestry College,Southwest Forestry University,Kunming 650224,China)

机构地区:[1]西南林业大学林学院,昆明650224

出  处:《世界林业研究》2024年第4期46-52,共7页World Forestry Research

基  金:国家自然基金委“面向高效和安全扑救决策的森林火灾场景自动识别研究”(32360392);国家林业和草原局“人为林草火灾综合测报关键技术及发生预警GIS平台”(2023133128);云南省教育厅“林学一流学科建设项目”(05000/523003)。

摘  要:近年来林火频发造成人力物力损失严重,林火预报和防控研究备受关注。植被冠层含水率是森林可燃物的重要参数,也是林火预报的关键因子,对林火发生及火行为测报预警具有重要意义。针对目前植被冠层含水率评估方法众多及数据多样,文中在收集、整理国内外植被冠层含水率评估方法特别是遥感反演评估方法的基础上,总结各方法的发展现状,梳理其存在的问题,并对多源遥感数据融合、人工智能算法、GIS分析方法等在精细植被冠层含水率时空反演中的应用前景进行展望,以期为增强植被冠层含水率评估效能、拓展遥感反演可燃物含水率应用深度、提高林火预报精度等提供借鉴和参考。In recent years,the frequent occurrence of forest fires has caused serious human and material loss,and the research on forest fire forecasting and prevention/control has attracted increasing attention.The moisture content of vegetation canopy is an important parameter of forest fuel and a key factor to forest fire forecasting,which has important significance for the prediction and early-warning of forest fire occurrence and fire behaviors.In view of the fact that there are many methods and diverse data for evaluating vegetation canopy's moisture content at present,this paper classifies the methods at home and abroad,especially the method of remote sensing inversion,summarizes their development state and existing problems,and discusses the prospects in the application of multi-source remote sensing data fusion,artificial intelligence algorithms,GIS analysis methods to the spatiotemporal inversion of fine vegetation canopy moisture content,in order to provide references for enhancing the evaluation efficiency of vegetation canopy moisture content,expanding the application of remote sensing inversion of fuel moisture content,and improving the accuracy of forest fire forecasting.

关 键 词:可燃物含水率 林火预报 植被冠层 遥感 评估方法 

分 类 号:S762.2[农业科学—森林保护学] S771.8[农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象