检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王胜平[1] 刘娉婷 陈晓红 陈志高[1] WANG Shengping;LIU Pingting;CHEN Xiaohong;CHEN Zhigao(East China University of Technology,Nanchang 330013,China;Changjiang Shanghai Waterway Bureau,Shanghai 200010,China)
机构地区:[1]东华理工大学测绘与空间信息工程学院,江西南昌330013 [2]交通运输部长江上海航道处,上海200010
出 处:《海洋测绘》2024年第4期21-25,共5页Hydrographic Surveying and Charting
基 金:国家自然科学基金(42266006);自然资源部海洋环境探测技术与应用重点实验室开放基金(MESTA-2020-A002);江西省重点研发计划(20212BBE53031)。
摘 要:针对现有的侧扫声纳图像水下沉船检测方法存在检测速度慢,传统的YOLOv5算法存在的漏检的问题,提出基于轻量化YOLOv7算法的水下沉船检测改进方法。首先,通过随机翻转、随机噪声等操作扩充沉船图像的样本数量;然后,引入迁移学习策略,将在COCO数据集上学习到的权重迁移到沉船检测的YOLOv7网络中;其次,改进模型损失函数中惩罚项的计算方式,提升收敛速度;最后在YOLOv7网络中引入FasterNet结构,减少模型的参数量和计算复杂度,降低模型对硬件的需求,达到轻量化模型的目的。实验结果表明,改进方法较原始YOLOv7算法在类平均精度值(mAP值)上提升了4.75%,检测速度也由原来的0.0218秒/帧提升到0.0179秒/帧,证明了改进方法的工程应用价值。For the existing side-scan sonar underwater shipwreck detection method,there are deficiencies in the detection speed and leakage detection in YOLOv5.This paper proposes an improved method for underwater wreck detection based on the lightweight YOLOv7 algorithm.First,the sampling numbers of shipwreck images are expanded by random flip,random noise and other operations.Second,a transfer learning strategy is introduced to transfer the weights learned on the COCO dataset to the YOLOv7 network for shipwreck detection.Third,the computation of the penalty term in the loss function of the model is improved to enhance the speed of convergence.Finally,a FasterNet structure is introduced into the YOLOv7 network,which reduces the number of parameters and the computational complexity of the model,and reduces the hardware requirement of the model to achieve lightweight model.The experimental results show that the improved method improves the class mean accuracy value(mAP value)by 4.75%compared with the original YOLOv7 algorithm,and the detection speed is also improved from 0.0218 fps to 0.0179 fps,which proves the value of the improved method in this paper for engineering applications.
关 键 词:侧扫声纳图像 沉船检测 YOLOv7算法 FasterNet结构 迁移学习
分 类 号:P229.3[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.94