基于机器学习的海面风速和有效波高联合反演  

Joint inversion of sea surface wind speed and significant wave height based on machine learning

在线阅读下载全文

作  者:梁月吉 蒋雪玉 党毓茜 罗启迪 朱丙林 LIANG Yueji;JIANG Xueyu;DANG Yuqian;LUO Qidi;ZHU Binglin(College of Geomatics and Geoinformation,Guilin University of Technology,Guilin 541004,China;Yulin City Natural Resources Planning and Mapping Information Institute,Yulin 573000,China)

机构地区:[1]桂林理工大学测绘地理信息学院,广西桂林541004 [2]玉林市自然资源规划测绘信息院,广西玉林573000

出  处:《海洋测绘》2024年第4期64-68,共5页Hydrographic Surveying and Charting

基  金:国家自然科学基金(42064003);广西省自然科学基金(2021GXNSFBA220046,2022GXNSFBA035639)。

摘  要:海面风速和有效波高(significant wave height,SWH)是海洋环境中的关键参数,两者之间关系密切。全球导航卫星系统反射测量(global navigation satellite system reflectometry,GNSS-R)可有效反演海面风速和SWH,然而已有研究局限于单一参数的反演。为此,提出一种基于机器学习算法的海面风速和SWH联合反演方法。首先通过质量控制获取有效的气旋全球导航卫星系统(cyclone global navigation satellite system,CYGNSS)观测数据,进而分别采用随机森林、极端梯度提升、轻量梯度提升机、决策树和自适应增强算法建立联合反演模型,并对比分析其反演性能。经实验表明:极端梯度提升更适用于海面风速和SWH的联合反演,均方根误差分别为0.91 m/s和0.20 m,皮尔逊相关系数分别达到0.90和0.96。相对于传统的单一参数反演,本文方法能够实现对海面风速和SWH高效又准确的反演。Sea surface wind speed and significant wave height(SWH)are key parameters in the marine environment,with a closely interrelated relationship.The global navigation satellite system reflectometry(GNSS-R)can effectively invert sea surface wind speed and SWH,yet existing studies have been limited to the inversion of single parameter.Thus,this paper presents a method for the joint inversion of sea surface wind speed and SWH based on machine learning algorithms.Initially,valid observational data from the cyclone global navigation satellite system(CYGNSS)were acquired through quality control.Subsequently,joint inversion models were constructed using random forest,extreme gradient boosting,light gradient boosting machine,decision tree,and adaptive boosting algorithms,and their inversion performances were comparatively analyzed.It is experimentally shown that the extreme gradient boosting is more suitable for the joint inversion of sea surface wind speed and SWH,and the root mean square errors are 0.91 m/s and 0.20 m,and the correlation coefficients reach 0.90 and 0.96,respectively.Compared with the traditional single parameter inversion,the method in this paper can realize efficient and accurate inversion of sea surface wind speed and SWH.

关 键 词:全球导航卫星系统反射测量 海面风速 有效波高 机器学习 联合反演 

分 类 号:P229.7[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象