检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张嘉睿 张豈明 毕枫林 张琰彬 王伟 任而今 张海立 ZHANG Jiarui;ZHANG Qiming;BI Fengin;ZHANG Yanbin;WANG Wei;REN Erjin;ZHANG Haii(School of Data Science and Engineering,East China Normal University,Shanghai 200062,China;Intel Asia Pacific R&D Co.Ltd.,Shanghai 200336,China;Yuxing Technology(Zhejiang)Co.Ltd.Shanghai Branch,Shanghai 201821,China)
机构地区:[1]华东师范大学数据科学与工程学院,上海200062 [2]英特尔亚太研发有限公司,上海200336 [3]驭行科技(浙江)有限公司上海分公司,上海201821
出 处:《华东师范大学学报(自然科学版)》2024年第5期162-172,共11页Journal of East China Normal University(Natural Science)
摘 要:提出并实现了一个本地轻量化课程教学智能辅助系统.该系统利用IPEX-LLM(Intel PyTorch extention for large language model)加速库,在计算资源受限的设备上高效部署并运行经过QLoRA(quantum-logic optimized resource allocation)框架微调的大语言模型,并结合增强检索技术,实现了智能问答、智能出题、教学大纲生成、教学演示文档生成等4个主要功能模块的课程灵活定制,在帮助教师提高教学备课和授课的质量与效率、保护数据隐私的同时,支撑学生个性化学习并提供实时反馈.在性能实验中,以集成优化后的Chatglm3-6B模型为例,该系统处理64-token输出任务时仅需4.08 s,验证了其在资源受限环境下快速推理的能力.在实践案例分析中,通过与原生Chatgml-6B和ChatGPT4.0在功能实现上的对比,进一步表明了该系统具备优越的准确性和实用性.This study introduces and implements a local,lightweight,intelligent teaching-assistant system.Using the IPEX-LLM(Intel PyTorch extention for large language model)acceleration library,the system can efficiently deploy and execute large language models that are fine-tuned using the QLoRA(quantum-logic optimized resource allocation)framework on devices with limited computational resources.Combining this with enhanced retrieval techniques,the system provides flexible course customization through four major functional modules:intelligent Q&A,automated question generation,syllabus creation,and course PPT generation.This system is intended to assist educators in improving the quality and efficiency of lesson preparation and delivery,safeguarding data privacy,supporting personalized student learning,and offering real-time feedback.Performance tests exemplified by the optimized Chatglm3-6B model show the rapid inference capability of the system via the processing of a 64-token output task within 4.08 s in a resource-constrained environment.A practical case study comparing the functionality of the system with native Chatglm-6B and ChatGPT 4.0 further validates its superior accuracy and practicality.
关 键 词:智能辅助 计算资源受限 IPEX-LLM 微调 增强检索
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.100.166