检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李闻达 刘洪[1,3,4] 吴天麒 LI WenDa;LIU Hong;WU TianQi(Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China;Innovation Academy for Earth Sciences,Chinese Academy of Sciences,Beijing 100029,China;Key Laboratory of Petroleum Resource Research,Chinese Academy of Sciences,Beijing 100029,China;Chinese Academy of Sciences,Beijing 100049,China;China University of Geoscience,Beijing 100083)
机构地区:[1]中国科学院地质与地球物理研究所,北京100029 [2]中国科学院地球科学研究院,北京100029 [3]中国科学院油气资源研究院重点实验室,北京100029 [4]中国科学院大学,北京100049 [5]中国地质大学(北京),北京100083
出 处:《地球物理学报》2024年第10期3891-3903,共13页Chinese Journal of Geophysics
基 金:国家重点研发计划(2022YFB3904601,2021YFA0716901);中国博士后科学基金(GZC20232629);国家自然科学基金面上项目(42174160);第74批博士后基金面上项目联合资助
摘 要:地震数据的初至拾取是近地表初至波反演、静校正等工作的基础,是后续地震数据处理中不可或缺的一部分.随着地震数据量的不断增加,近地表条件更为复杂,信噪比越来越低,传统的自动拾取方法逐渐无法满足海量的拾取任务,需要大量的人工校正工作.因此需要一种更为精确的地震数据自动初至拾取方法.本文的贡献主要有以下几点.本文提出将一个注意力机制的U-Net网络应用于信噪比低、强近地表干扰的地区的初至拾取方法.首先将注意力门结构加入到一个标准的U-Net模型中,逐步抑制不相关的背景部分特征,提升拾取的准确性.其次本文提出使用地震波形数据与能量表象(Energy Semblance,ES)作为双通道数据体,可以使U-Net不仅关注相位信息,而且关注到初至的能量属性.此外,我们使用单通道的"0-1"标签作为网络的输出,可以大大缓解标签值分布不均衡的问题,提升预测精度.最后我们提出构建复杂近地表特征的合成数据集,包含复杂初至特征及复杂非均匀噪声的样本,验证方法的鲁棒性,并证明Dice-loss函数可以提升拾取精度.本文提出的方法对于强噪声干扰、缺道坏道及复杂近地表情况均有良好的适应性.The first arrival pickup is the basis for near-surface first arrivals inversion and statics correction, an indispensable part of subsequent seismic data processing. With the ever increasing seismic data volumes, more complex near-surface conditions, and low Signal-to-Noise Ratio(SNR), traditional automatic methods can not meet the pickup requirements. So a more accurate automatic first arrival pickup method is crucial. The main contributions of this paper are as follows: This study proposed an attention-U-Net and applied it to the first arrival pickup of seismic data with a low signal-to-noise ratio and strong near-surface influence. Firstly, the attention gates were integrated into a standard U-Net model, which progressively suppressed features in irrelevant background parts and improved the picking accuracy. Secondly, this paper proposed to use seismic waveform data and energy semblance data as two channels data body, which makes the U-Net focus not only on the phase but also on the energy attribute of the first arrival traveltime. Thirdly, we used a single channel"0-1"label as the U-Net's output, which can alleviate the unbalanced distribution of label value and improve the prediction accuracy. Then, we proposed a scheme to construct a synthetic dataset containing characteristics of seismic field data to test the robustness of the U-Net and proved that the Dice-loss function could improve the pickup accuracy. At last, for mountain field, seismic data, the U-Net proposed in this paper has better adaptability to strong noise interference, missing and bad traces, and complex near-surface conditions, significantly reducing labor expense.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.41.2