基于1DCNN-LSTM神经网络模型的闸门故障诊断分析  

Gate Fault Diagnosis and Analysis Based on 1DCNN-LSTM Neural Network Model

在线阅读下载全文

作  者:魏庆镇 张依潇 张浩潍 WEI Qingzhen;ZHANG Yixiao;ZHANG Haowei(Shang Zhuanglu Reservoir Management Center of Feicheng City,Feicheng,Shandong 271600,China;School of Information Science and Technology,Southwest Jiaotong University,Chengdu,Sichuan 611700,China)

机构地区:[1]肥城市尚庄炉水库管理中心,山东肥城271600 [2]西南交通大学信息科学与技术学院,四川成都611700

出  处:《山东水利》2024年第9期55-58,共4页Shandong Water Resources

摘  要:针对闸门故障导致安全事故的问题,提出了一种1DCNN-LSTM故障诊断模型,该方法结合了空间特征提取与时序特征理解能力,能够更全面地理解信号中蕴含的特征信息,通过对闸门系统的荷载电流、开度等特征信号进行特征提取,更加高效地检测出闸门的工作状态,完成闸门故障诊断任务。结果表明:该方法的分类准确率达到了93.7%,且综合性能良好,相较于对比模型具有显著优势,充分证明了其有效性。Aiming at the problem of safety accidents caused by gate faults,a 1DCNN-LSTM fault diagnosis model is proposed.The proposed method combines the ability of spatial feature extraction and temporal feature to understand the feature information contained in the signal more comprehensively.The working state of the gate can be detected more efficiently,and the task of gate fault diagnosis can be completed.The results show that the classification accuracy of the proposed method reaches 93.7%,and the comprehensive performance is fine,which has significant advantages over the comparison model,and fully proves its effectiveness.

关 键 词:水工闸门 故障诊断 卷积网络 物联网 

分 类 号:TV698[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象