检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康斓 苏志金 KANG Lan;SU Zhi-jin(PLA Dalian Naval Academy,Dalian 116018,Liaoning Province,China)
出 处:《信息技术》2024年第9期176-185,共10页Information Technology
摘 要:图像数据增强技术在计算机视觉和机器学习领域中扮演着重要的角色。传统的图像数据增强技术包括几何变换、像素级图像变换、图像滤波等方法,但这些方法的效果受到一定的限制。因此,基于深度学习的图像数据增强技术应运而生,涌现出自适应增强、生成对抗式网格(Generative Adversarial Networks, GAN)、弱监督等技术并逐渐成为改进数据集,实现数据的增加和质量的提升,解决深度学习模型过拟合和欠拟合问题的重要手段。文中综述了传统图像数据增强技术和基于深度学习的图像数据增强技术相关原理与应用,并探讨了他们的优缺点以及未来的发展方向。Image data enhancement plays an important role in computer vision and machine learning.The traditional image data enhancement techniques include geometric change,pixel level image change,image filtering and so on,but the effect of these methods is limited.Therefore,image data enhancement technology based on deep learning emerges.The development of adaptive enhancement,GAN,weak supervision and other technologies has gradually become important means to improve the data set,realize the increase of data and the improvement of quality,and solve the overfitting and underfitting problems of deep learning model.The traditional image data enhancement technology and deep learning-based image data enhancement technology are reviewed,and their advantages and disadvantages and future development direction are discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.251.83