Bi-Jordan n-Derivations on Triangular Rings:Maximal Quotient Rings and Faithful Module  

在线阅读下载全文

作  者:Xinfeng LIANG Lingling ZHAO 

机构地区:[1]School of Mathematics and Big Data,Anhui University of Science and Technology,Anhui 232001,P.R.China

出  处:《Journal of Mathematical Research with Applications》2024年第5期596-616,共21页数学研究及应用(英文版)

基  金:Supported by the Open Research Fund of Hubei Key Laboratory of Mathematical Sciences(Central China Normal University);the Natural Science Foundation of Anhui Province(Grant No.2008085QA01);the University Natural Science Research Project of Anhui Province(Grant No.KJ2019A0107)。

摘  要:In this paper,we mainly study the structure of bi-Jordan n-derivations in triangular rings under conditions of maximal quotient rings and faithful bimodules,respectively.It is shown that every bi-Jordan n-derivation can be decomposed into the sum of an inner biderivation and an extremal biderivation in two different conditions.As by-products,the structures of bi-Jordan n-derivation over upper triangular matrix rings and nest algebras are characterized,respectively,and generalize the known results.

关 键 词:triangular rings maximal quotient rings faithful bimodules nest algebras extremal biderivation 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象