检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈晓薇 刘力嘉 于业贤 章萌 李沛 赵厚宇[5] 孙烨祥 孙宏玉 孙玉梅[7] 刘学洋[8] 林鸿波[6] 沈鹏[6] 詹思延[1,2] 孙凤[1,2] Chen Xiaowei;Liu Lijia;Yu Yexian;Zhang Meng;Li Pei;Zhao Houyu;Sun Yexiang;Sun Hongyu;Sun Yumei;Liu Xueyang;Lin Hongbo;Shen Peng;Zhan Siyan;Sun Feng(Department of Epidemiology and Biostatistics,School of Public Health,Peking University,Beijing 100191,China;Key Laboratory of Epidemiology of Major Diseases(Peking University),Ministry of Education,Beijing 100191,China;Hainan University,Haikou 570228,China;Hainan Boao Lecheng International Medical Tourism Pilot Zone Administration,Hainan Real-World Data Research Institute,Lecheng 571437,China;School of Medicine,Chongqing University,Chongqing 400044,China;Yinzhou District Center for Disease Control and Prevention of Ningbo,Ningbo 315100,China;School of Nursing,Peking University,Beijing 100191,China;National Engineering Research Center for Software Engineering,Peking University,Beijing 100871,China)
机构地区:[1]北京大学公共卫生学院流行病与卫生统计学系,北京100191 [2]重大疾病流行病学教育部重点实验室(北京大学),北京100191 [3]海南大学,海口570228 [4]海南省博鳌乐城国际医疗旅游先行区管理局海南省真实世界数据研究院,乐城571437 [5]重庆大学医学院,重庆400044 [6]宁波市鄞州区疾病预防控制中心,宁波315100 [7]北京大学护理学院,北京100191 [8]北京大学软件工程国家工程研究中心,北京100871
出 处:《中华流行病学杂志》2024年第9期1283-1290,共8页Chinese Journal of Epidemiology
基 金:2024年度浙江省医药卫生科技计划一般项目(2024KY1611);宁波市重大科技攻关暨“揭榜挂帅”项目(2021Z054);北京市自然科学基金-海淀原始创新联合基金前沿项目(L222103)。
摘 要:目的开发新诊断2型糖尿病(T2DM)患者糖尿病视网膜病变(DR)发病风险的预测模型。方法选取2015年1月1日至2022年12月31日宁波市鄞州区域健康信息平台中新诊断T2DM患者为研究对象。使用Lasso-Cox比例风险回归模型筛选预测变量,采用Cox比例风险回归模型构建DR发病风险预测模型。采取Bootstrap 500次重抽样的方法进行内部验证,并使用C指数、受试者工作特征曲线、曲线下面积(AUC)和校准曲线评估模型的性能。结果最终模型纳入的预测变量包括T2DM发病年龄、文化程度、FPG、糖化血红蛋白、尿蛋白、估算肾小球滤过率、脂质调节剂和血管紧张素转化酶抑制剂用药史。最终模型C指数为0.622,校正后C指数均值为0.623(95%CI:0.607~0.634),预测DR 3、5、7年内发病风险的AUC值分别为0.631、0.620、0.624,校准曲线与理想曲线重合度较高。结论本研究构建了简洁且实用的DR发病风险预测模型,为新诊断T2DM患者制定个体化DR筛查和干预方案提供参考。Objective To develop a prediction model for the risk of diabetic retinopathy(DR)in patients with newly diagnosed type 2 diabetes mellitus(T2DM).Methods Patients with new diagnosis of T2DM recorded in Yinzhou Regional Health Information Platform between January 1,2015 and December 31,2022 were included in the study.The predictor variables were selected by using Lasso-Cox proportional hazards regression model.Cox proportional hazards regression models were used to establish the prediction model for the risk of DR.Bootstrap method(500 resamples)was used for internal validation,and the performance of the model was assessed by C-index,the receiver operating characteristic curve and area under the curve(AUC),and calibration curve.Results The predictor variables included in the final model were age of T2DM onset,education level,fasting plasma glucose,glycated hemoglobin A1c,urinary albumin,estimated glomerular filtration rate,and history of lipid-lowering agent and angiotensin converting enzyme inhibitor uses.The C-index of the final model was 0.622,and the mean corrected C-index was 0.623(95%CI:0.607-0.634).The AUC values for predicting the risk of DR after 3,5,and 7 years were 0.631,0.620,and 0.624,respectively,with a high degree of overlap of the calibration curves with the ideal curves.Conclusion In this study,a simple and practical risk prediction model for DR risk prediction was developed,which could be used as a reference for individualized DR screening and intervention in newly diagnosed T2DM patients.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222