机构地区:[1]中国中医科学院中药研究所,北京100700 [2]江西中医药大学药学院,江西南昌330004 [3]中国中医科学院中医药健康产业研究所,江西南昌330000 [4]青海大学医学部,青海西宁810016
出 处:《中国中药杂志》2024年第17期4658-4671,共14页China Journal of Chinese Materia Medica
基 金:中国中医科学院科技创新工程项目(CI202104305,CI2021B014,CI202104301);国家重点研发计划中医药现代化研究重点专项(2022YFC3501900);中央级公益性科研院所基本科研业务费专项(ZXKT21013)。
摘 要:对2种不同配体铁基金属有机骨架(iron-based organic framework,FeMOF)MIL^(-1)00(Fe)和MIL^(-1)01(Fe)的制备工艺进行优化及筛选,将优选后的FeMOF负载荜茇酰胺(piperlongumine,PL),以增强PL的生物相容度及抗肿瘤药效。采用溶剂热法,以优选后的反应溶剂分别制备MIL^(-1)00(Fe)和MIL^(-1)01(Fe),以粒径、多分散指数(PDI)、得率为指标,采用确定性筛选设计(DSD)试验并分别构建数学模型,结合Derringer期望函数优化得到两者的最优制备工艺;表征后选择最佳的FeMOF使用溶剂扩散法负载PL,单因素结合正交试验优化其载PL工艺;使用CCK-8法初步评价空白FeMOF的生物安全性以及载药后纳米制剂的抗肿瘤药效。实验结果表明,MIL^(-1)00(Fe)最优制备工艺为温度127.8℃、反应时间14.796 h、溶剂总量11.157 mL、投料比1.365,制得粒径(108.84±2.79)nm、PDI 0.100±0.023、得率36.93%±0.79%;MIL^(-1)01(Fe)最优制备工艺为温度128.1℃、反应时间6 h、溶剂总量10.005 mL、投料比0.500,制得粒径(254.04±22.03)nm、PDI 0.289±0.052、得率44.95%±0.45%;选择MIL^(-1)00(Fe)载PL,最佳载药工艺为MIL^(-1)00(Fe)与PL投料比1∶2,PL药液质量浓度7 mg·mL^(-1),DMF-水1∶5,制得MIL^(-1)00(Fe)/PL纳米粒载药量为68.86%±1.82%;MIL-100(Fe)在0~120μg·mL^(-1)剂量下对HepG2细胞无毒性,游离PL处理HepG2细胞24 h半数抑制浓度(IC_(50))为1.542μg·mL^(-1),MIL^(-1)00(Fe)/PL的IC_(50)为1.092μg·mL^(-1)(以PL计)。该研究创新性地使用了确定性筛选设计构建数学模型,结合Derringer期望函数优化出MIL-100(Fe)和MIL-101(Fe)的最优合成工艺,优选后的MIL-100(Fe)纳米粒制备及载PL工艺稳定可行,MIL-100(Fe)粒子大小形状均一,晶型良好,载药量高,能够显著地增强PL的抗肿瘤药效。为纳米制剂的工艺优化提供了全新的方法,为PL的抗肿瘤纳米制剂的进一步开发研究奠定了基础。The preparation processes of iron-based organic framework(FeMOF)MIL-100(Fe)and MIL-101(Fe)with two different ligands were optimized and screened,and the optimized FeMOF was loaded with piperlongumine(PL)to enhance the biocompatibility and antitumor efficacy of PL.The MIL-100(Fe)and MIL-101(Fe)were prepared by solvent thermal method using the optimized reaction solvent.With particle size,polymer dispersity index(PDI),and yield as indexes,the optimal preparation processes of the two were obtained by using the definitive screening design(DSD)experiment and establishing a mathematical model,combined with the Derringer expectation function.After characterization,the best FeMOF was selected to load PL by solvent diffusion method,and the process of loading PL was optimized by a single factor combined with an orthogonal experiment.The CCK-8 method was used to preliminarily evaluate the biological safety of blank FeMOF and the antitumor effect of the drug-loaded nano preparations.The experimental results showed that the optimal preparation process of MIL-100(Fe)was as follows:temperature at 127.8℃,reaction time of 14.796 h,total solvent volume of 11.157 mL,and feed ratio of 1.365.The particle size of obtained MIL-100(Fe)nanoparticles was(108.84±2.79)nm;PDI was 0.100±0.023,and yield was 36.93%±0.79%.The optimal preparation process of MIL-101(Fe)was as follows:temperature at 128.1℃,reaction time of 6 h,total solvent volume of 10.005 mL,and feed ratio of 0.500.The particle size of obtained MIL-101(Fe)nanoparticles was(254.04±22.03)nm;PDI was 0.289±0.052,and yield was 44.95%±0.45%.The optimal loading process of MIL-100(Fe)loaded with PL was as follows:the feed ratio of MIL-100(Fe)to PL was 1∶2;the concentration of PL solution was 7 mg·mL^(-1),and the ratio of DMF to water was 1∶5.The drug loading capacity of obtained MIL-100(Fe)/PL nanoparticles was 68.86%±1.82%;MIL-100(Fe)was nontoxic to HepG2 cells at a dose of 0-120μg·mL-1,and the half-inhibitory concentration(IC_(50))of free PL for 24 h treatment of HepG
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...