船舶涡轮机叶片细小裂痕视觉显著性检测研究  被引量:1

Research on visual significance detection of small cracks in ship turbine blades

在线阅读下载全文

作  者:张麟华 王煜 ZHANG Linhua;WANG Yu(Computer Engineering Department,Taiyuan Institute of Technology,Taiyuan 030008,China)

机构地区:[1]太原工业学院计算机工程系,山西太原030008

出  处:《舰船科学技术》2024年第18期167-170,共4页Ship Science and Technology

基  金:山西省科技厅重点研发项目(201903D121171)。

摘  要:为精准掌握涡轮机叶片的运行状态,判断其是否需要进行更换,提出船舶涡轮机叶片细小裂痕视觉显著性检测方法。利用改进同态滤波算法平滑叶片CCD图像,增强图像的对比度以及均衡度,基于谱残差视觉注意模型提取显著图,通过线性迭代聚类算法分割获取的显著图,设定判断阈值,确定最终的船舶涡轮机叶片微小裂痕区域,完成船舶涡轮机叶片细小裂痕检测。测试结果显示,该方法具备较好的应用效果,可显著提升图像整体均匀度;显著图的提取效果较好,平均绝对误差至均在0.021以下,可靠确定船舶涡轮机叶片微小裂痕区域。To accurately grasp the operating status of turbine blades and determine whether they need to be replaced,a visual significance detection method for small cracks in ship turbine blades is proposed.Using an improved homomorphic filtering algorithm to smooth the blade CCD image,enhance the contrast and balance of the image,extract saliency maps based on spectral residual visual attention model,segment the saliency maps obtained through linear iterative clustering algorithm,set the judgment threshold,determine the final small crack area of the ship turbine blade,and complete the detection of small cracks in the ship turbine blade.The test results show that this method has good application effects and can significantly improve the overall uniformity of the image;The extraction effect of saliency maps is good,with an average absolute error below 0.021,which reliably determines the small crack areas of ship turbine blades.

关 键 词:船舶涡轮机 叶片细小裂痕 视觉显著性检测 图像处理 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象