检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李季 王建林[1] 何睿 周新杰 王雯 赵利强[1] LI Ji;WANG Jianlin;HE Rui;ZHOU Xinjie;WANG Wen;ZHAO Liqiang(College of Information Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China;Key Laboratory of Environmental Biotechnology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China)
机构地区:[1]北京化工大学信息科学与技术学院,北京100029 [2]中国科学院生态环境研究中心,中国科学院环境生物技术重点实验室,北京100085
出 处:《化工学报》2024年第9期3231-3241,共11页CIESC Journal
基 金:国家自然科学基金项目(61973025,62373036)。
摘 要:现有的多模态间歇过程软测量未考虑过程数据的批次差异及过渡模态的复杂时变特性,影响了间歇过程模态识别的合理性及质量变量在线软测量的准确性。提出了一种基于双边界支持向量数据描述-相关向量回归(double boundary support vector data description-relevance vector regression,DBSVDD-RVR)的间歇过程质量变量在线软测量方法。依据间歇过程离线模态划分获得的各稳定及过渡模态历史数据,建立DBSVDD在线模态识别模型,并引入滑动窗,构建间歇过程在线模态识别策略,利用DBSVDD模型实现在线测量数据的模态识别;在此基础上,构建了基于超球体距离的数据相似度计算方法,选择过渡模态在线数据的相似建模数据集,建立过渡模态的即时学习RVR软测量模型,并依据历史数据建立各稳定模态的RVR软测量模型,实现间歇过程质量变量的在线软测量。青霉素发酵过程的实验结果表明,所提方法有效地提高了间歇过程模态识别的合理性和质量变量在线软测量的准确性。The existing multimode batch process soft sensor does not consider the batch difference of process data and the complex time-varying characteristics of transition modes,which affects the rationality of batch process mode identification and the accuracy of online soft sensing of quality variables.This paper proposes an online soft sensing method for batch process quality variables based on double boundary support vector data description-relevance vector regression(DBSVDD-RVR).According to the historical data of stable and transition modes obtained by offline mode partition of batch processes,the online mode identification model of DBSVDD was established.Then,the sliding window was introduced to construct the online mode identification strategy,and the online mode identification of batch data was realized by using DBSVDD model.On this basis,the data similarity calculation method based on hypersphere distance was constructed,and the similarity modeling data set of online data in transition mode was selected to establish the just-in-time learning RVR soft sensing model of transition mode.The RVR soft sensing model of each stable mode was established according to the historical data,and the online soft sensing of batch process quality variables was realized.The experimental results of penicillin fermentation process show that the proposed method effectively improves the rationality of mode identification and the accuracy of online soft sensing for quality variables in batch processes.
关 键 词:间歇式 双边界支持向量数据描述 在线模态识别 模型 预测
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49