检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张钰婷 ZHANG Yuting(Dalian International Studies University,Dalian Liaoning 116000,China)
出 处:《信息与电脑》2024年第12期16-19,共4页Information & Computer
摘 要:近年来,企业外部环境日益复杂多变,导致供应链面临诸多挑战。需求预测作为供应链管理的关键环节,其准确性直接影响企业的运营效率和市场竞争力。然而,传统需求预测方法受多种因素影响,预测准确率普遍较低。本文研究了基于机器学习算法的产品订单数据分析方法,旨在通过训练历史数据来精准预测未来需求。本文具体采用了长短时记忆网络(Long Short-Term Memory,LSTM)、随机森林、XGBoost和轻量梯度提升框架(Light Gradient Boosting Machine,LGBM)等模型,并对比了它们的预测性能。实验结果表明,LGBM模型在预测准确性上表现最优,能够为企业提供更加可靠的决策支持。In recent years,the external environment of enterprises has become increasingly complex and changing,leading to many challenges for the supply chain.As a key link in supply chain management,demand forecasting directly affects the operational efficiency and market competitiveness of enterprises.However,traditional demand forecasting methods are affected by various factors,resulting in generally low prediction accuracy.This article studies a product order data analysis method based on machine learning algorithms,aiming to accurately predict future demand by training historical data.This article specifically uses models such as LSTM,random forest,XGBoost,and LGBM,and compared their predictive performance.The experimental results show that the LGBM model performs the best in prediction accuracy and can provide more reliable decision support for enterprises.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127