Research on Feature Matching Optimization Algorithm for Automotive Panoramic Surround View System  

在线阅读下载全文

作  者:Guangbing Xiao Ruijie Gu Ning Sun Yong Zhang 

机构地区:[1]College of Automobile and Traffic Engineering,Nanjing Forestry University,Nanjing,210037,China

出  处:《Computer Systems Science & Engineering》2024年第5期1329-1348,共20页计算机系统科学与工程(英文)

基  金:the National Natural Science Foundation of China(61803206);the Key R&D Program of Jiangsu Province(BE2022053-2);the Nanjing Forestry University Youth Science and Technology Innovation Fund(CX2018004)for partly funding this project.

摘  要:In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has proposed a high-performance dimension reduction parallel matching algorithm that integrates Principal Component Analysis(PCA)and Dual-Heap Filtering(DHF).The algorithm employs PCA to map the feature points into the lower-dimensional space and employs the square of Euclidean distance for feature matching,which significantly reduces computational complexity.To ensure the accuracy of feature matching,the algorithm utilizes Dual-Heap Filtering to filter and refine matched point pairs.To further enhance matching speed and make optimal use of computational resources,the algorithm introduces a multi-core parallel matching strategy,greatly elevating the efficiency of feature matching.Compared to Scale-Invariant Feature Transform(SIFT)and Speeded Up Robust Features(SURF),the proposed algorithm reduces matching time by 77%to 80%and concurrently enhances matching accuracy by 5%to 15%.Experimental results demonstrate that the proposed algorithmexhibits outstanding real-time matching performance and accuracy,effectivelymeeting the feature-matching requirements of automotive panoramic surround view systems.

关 键 词:Featurematching automotive panoramic surround view system principal component analysis euclidean distance dual-heap filtering 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象