Improving Prediction Efficiency of Machine Learning Models for Cardiovascular Disease in IoST-Based Systems through Hyperparameter Optimization  

在线阅读下载全文

作  者:Tajim Md.Niamat Ullah Akhund Waleed M.Al-Nuwaiser 

机构地区:[1]Department of Computer Science and Engineering(CSE),Daffodil International University,Dhaka,1216,Bangladesh [2]Graduate School of Science and Engineering,Saga University,Saga,8408502,Japan [3]Computer Science Department,College of Computer and Information Sciences,Imam Mohammad Ibn Saud Islamic University(IMSIU),Riyadh,11623,Saudi Arabia

出  处:《Computers, Materials & Continua》2024年第9期3485-3506,共22页计算机、材料和连续体(英文)

基  金:supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU),Grant Number IMSIU-RG23151.

摘  要:This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning.Significant improvements were observed across various models,with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score,recall,and precision.The study underscores the critical role of tailored hyperparameter tuning in optimizing these models,revealing diverse outcomes among algorithms.Decision Trees and Random Forests exhibited stable performance throughout the evaluation.While enhancing accuracy,hyperparameter optimization also led to increased execution time.Visual representations and comprehensive results support the findings,confirming the hypothesis that optimizing parameters can effectively enhance predictive capabilities in cardiovascular disease.This research contributes to advancing the understanding and application of machine learning in healthcare,particularly in improving predictive accuracy for cardiovascular disease management and intervention strategies.

关 键 词:Internet of sensing things(IoST) machine learning hyperparameter optimization cardiovascular disease prediction execution time analysis performance analysis wilcoxon signed-rank test 

分 类 号:TP39[自动化与计算机技术—计算机应用技术] R54[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象