A Cascading Fault Path Prediction Method for Integrated Energy Distribution Networks Based on the Improved OPA Model under Typhoon Disasters  

在线阅读下载全文

作  者:Yue He YaxiongYou ZhianHe Haiying Lu Lei Chen Yuqi Jiang Hongkun Chen 

机构地区:[1]Guangzhou Power Supply Bureau,Guangdong Power Grid Co.,Ltd.,CSG,Guangzhou,510000,China [2]School of Electrical Engineering and Automation,Wuhan University,Wuhan,430072,China

出  处:《Energy Engineering》2024年第10期2825-2849,共25页能源工程(英文)

基  金:supported by the Science and Technology Project of China Southern Power Grid Co.,Ltd.under Grant GDKJXM20222357.

摘  要:In recent times,the impact of typhoon disasters on integrated energy active distribution networks(IEADNs)has received increasing attention,particularly,in terms of effective cascading fault path prediction and enhanced fault recovery performance.In this study,we propose a modified ORNL-PSerc-Alaska(OPA)model based on optimal power flow(OPF)calculation to forecast IEADN cascading fault paths.We first established the topology and operational model of the IEADNs,and the typical fault scenario was chosen according to the component fault probability and information entropy.The modified OPA model consisted of two layers:An upper-layer model to determine the cascading fault location and a lower-layer model to calculate the OPF by using Yalmip and CPLEX and provide the data to update the upper-layer model.The approach was validated via the modified IEEE 33-node distribution system and two real IEADNs.Simulation results showed that the fault trend forecasted by the novel OPA model corresponded well with the development and movement of the typhoon above the IEADN.The proposed model also increased the load recovery rate by>24%compared to the traditional OPA model.

关 键 词:IEADNs OPA model cascading fault path prediction fault probability optimal power flow typical fault scenario 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象