检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许焱[1] 杨晓光 孔燕燕[1] 韦青青 汤晨 Xu Yan;Yang Xiaoguang;Kong Yanyan;Wei Qingqing;Tang Chen(Anhui Provincial Branch of the People’s Bank of China,Hefei 230091,AnHui,China;Hefei Credit Co.,Ltd.,Hefei 230000,AnHui,China;Chuzhou Branch of the People’s Bank of China,Chuzhou 239000,AnHui,China;Wuhu Branch of the People’s Bank of China,Wuhu 241000,AnHui,China)
机构地区:[1]中国人民银行安徽省分行,安徽合肥230091 [2]合肥市征信有限公司,安徽合肥230000 [3]中国人民银行滁州市分行,安徽滁州239000 [4]中国人民银行芜湖市分行,安徽芜湖241000
出 处:《征信》2024年第8期54-60,共7页Credit Reference
摘 要:科创企业具有高投入、高风险、重研发、轻资产等特点,重资产抵押的传统信贷投放模式难以有效对接科创企业融资需求,科创企业融资难问题较为突出。合肥市作为国家级科创金融改革试验区,突出金融供给侧精准发力,鼓励金融机构加大对科创企业融资支持力度,创新研发了科创企业信用评价体系“研值分”。通过归集科创企业各类信用信息,建立符合科创企业特征的评分方法,为金融机构对科创企业信用画像、有效增信提供支持,缓解银企信息不对称难题,促进科创企业融资。在科创企业信用评价实践取得成效的基础上,建议进一步优化核心数据指标归集、科创企业评价标准,创新应用场景拓展等,并加强应用推广。Sci-tech enterprises are characterized by high investment,high risk,a strong focus on research and development,and low asset intensity.The traditional credit lending model,which relies heavily on asset collateral,struggles to effectively meet the financing needs of sci-tech enterprises.Consequently,the challenge of securing financing for these enterprises is particularly pronounced.Hefei,designated as a state-level pilot zone for science and technology innovation finance reform,exemplifies the targeted influence of the financial supply side and promotes increased financing support from financial institutions for science and technology innovation enterprises.An innovative credit evaluation system known as“Research Value Score”has been developed.This system aggregates various forms of credit information pertaining to Sci-tech enterprises and devises a scoring methodology tailored to their specific characteristics.It aims to assist financial institutions in creating accurate credit profiles for Sci-tech enterprises while effectively increase credit.Ultimately,this initiative seeks to alleviate information asymmetry issues between banks and businesses and facilitate enhanced access to funding for Sci-tech enterprises.Based on the accomplishments in credit evaluation practice for science and technology enterprises,further optimization has been made in core data index collection,evaluation criteria,and expansion of innovation application scenarios,while also strengthening the promotion of applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28