检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏辉 钱祥运 XIA Hui;QIAN Xiangyun(College of Computer Science and Technology,Faculty of Information Science and Engineering,Ocean University of China,Qingdao 266100,China)
机构地区:[1]中国海洋大学信息科学与工程学部计算机科学与技术学院,青岛266100
出 处:《信息网络安全》2024年第8期1163-1172,共10页Netinfo Security
基 金:国家自然科学基金[62172377]。
摘 要:后门攻击指通过在深度神经网络模型训练过程中对原模型植入特定的触发器,导致模型误判的攻击。目前后门攻击方案普遍面临触发器隐蔽性差、攻击成功率低、投毒效率低与中毒模型易被检测的问题。为解决上述问题,文章在监督学习模式下,提出一种基于特征空间相似理论的模型反演隐形后门攻击方案。该方案首先通过基于训练的模型反演方法和一组随机的目标标签类别样本获得原始触发器。然后,通过Attention U-Net网络对良性样本进行特征区域分割,在重点区域添加原始触发器,并对生成的中毒样本进行优化,提高了触发器的隐蔽性和投毒效率。通过图像增强算法扩充中毒数据集后,对原始模型再训练,生成中毒模型。实验结果表明,该方案在保证触发器隐蔽性的前提下,在GTSRB和CelebA数据集中以1%的投毒比例达到97%的攻击成功率。同时,该方案保证了目标样本与中毒样本在特征空间内相似性,生成的中毒模型能够成功逃脱防御算法检测,提高了中毒模型的不可分辨性。通过对该方案进行深入分析,也可为防御此类后门攻击提供思路。Backdoor attack refers to an attack that leads to model misjudgment by implanting a specific trigger to the original model during the model training process of deep neural networks.However,the current backdoor attack schemes generally face the problems of poor trigger concealment,low success rate of attack,low poisoning efficiency with easy detection of the poison model.To solve the above problems,the article proposed a model inversion stealthy backdoor attack scheme based on feature space similarity theory under supervised learning mode.The scheme first obtaind the original triggers through a training-based model inversion method and a set of random target label category samples.After that,the benign samples were segmented into feature regions by Attention U-Net network,the original triggers were added to the focus regions,and the generated poison samples were optimized to improve the stealthiness of the triggers and enhance the poisoning efficiency.After expanding the poison dataset by image enhancement algorithm,the original model was retrained to generate the poison model.The experimental results show that the scheme achieves 97%attack success rate with 1%poisoning ratio in GTSRB and CelebA datasets while ensuring the stealthiness of the trigger.At the same time,the scheme ensures the similarity between target samples and poison samples in the feature space,and the generated poison model can successfully escape detection by the defense algorithm,which improves the indistinguishability of the poison model.Through in-depth analysis of this scheme,it can also provide ideas for defending against such backdoor attacks.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145