Chasing Sequencing Perfection:Marching Toward Higher Accuracy and Lower Costs  

在线阅读下载全文

作  者:Hangxing Jia Shengjun Tan Yong E.Zhang 

机构地区:[1]CAS Key Laboratory of Zoological Systematics and Evolution&State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China [2]University of Chinese Academy of Sciences,Beijing 100049,China [3]CAS Center for Excellence in Animal Evolution and Genetics,Chinese Academy of Sciences,Kunming 650223,China

出  处:《Genomics, Proteomics & Bioinformatics》2024年第2期1-12,共12页基因组蛋白质组与生物信息学报(英文版)

基  金:supported by the Ministry of Agriculture and Rural Affairs of China,the National Key R&D Program of China(Grant No.2019YFA0802600);the Chinese Academy of Sciences(Grant Nos.ZDBS-LY-SM005 and XDPB17);the National Natural Science Foundation of China(Grant No.31970565).

摘  要:Next-generation sequencing(NGS),represented by Illumina platforms,has been an essential cornerstone of basic and applied research.However,the sequencing error rate of 1 per 1000 bp(10^(−3))represents a serious hurdle for research areas focusing on rare mutations,such as somatic mosaicism or microbe heterogeneity.By examining the high-fidelity sequencing methods developed in the past decade,we summarized three major factors underlying errors and the corresponding 12 strategies mitigating these errors.We then proposed a novel framework to classify 11 preexisting representative methods according to the corresponding combinatory strategies and identified three trends that emerged during methodological developments.We further extended this analysis to eight long-read sequencing methods,emphasizing error reduction strategies.Finally,we suggest two promising future directions that could achieve comparable or even higher accuracy with lower costs in both NGS and long-read sequencing.

关 键 词:Sequencing error High-fidelity sequencing Consensus sequencing Single-molecule sequencing Rare mutation 

分 类 号:Q78[生物学—分子生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象