检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于飞桥 陈志敏[1] 陈鹏[2] YU Feiqiao;CHEN Zhimin;CHEN Peng(School of Electronic Information Engineering,Shanghai Dianji University,Shanghai 201306,China;State Key Laboratory of Millimeter Waves,Southeast University,Nanjing 210096,China)
机构地区:[1]上海电机学院电子信息学院,上海201306 [2]东南大学毫米波国家重点实验室,江苏南京210096
出 处:《无线电通信技术》2024年第5期958-966,共9页Radio Communications Technology
基 金:上海市自然科学基金面上项目(22ZR1425200)。
摘 要:车联网作为未来智慧交通系统中的重要组成部分,对通信和感知的要求也越来越高。通信感知一体化(Integrated Sensing and Communication,ISAC)作为车联网方向极具潜力的一项技术,因可以解决通信场景下的位置感知问题而引起业内的广泛关注。由于城市场景中电磁环境更加随机和不可控,使得当前传统的通信系统架构已经无法满足车-路侧单元(Vehicle-to-Infrastructure,V2I)系统中的通信与感知需求。对此,考虑在传统的V2I系统加入智能反射面(Reconfigurable Intelligent Surface,RIS),将其与ISAC技术结合,构建多径场景下新的被动感知模型。深入分析了在新的被动感知模型下,RIS辅助ISAC通信系统的抗多径性能优化。提出一种大尺寸RIS单元优化分组方法,使部分单元参与信号的反射,并将单元优化分组后的大尺寸RIS与相同单元数的小尺寸RIS进行系统性能对比。仿真结果表明,优化设计大尺寸RIS实现了高于小尺寸RIS大约1.5 bit/s的信号传输效率,在提升系统信号传输性能的同时有效地减少了信道的估计开销。As an important part of the future intelligent transportation system,the Internet of Vehicles has increasingly high requirement for communication and perception.Integrated Sensing and Communication(ISAC),as a promising technology in Internet of Vehicles,has attracted widespread attention in the industry because it can solve the problem of location perception in communication scenarios.Due to the more random and uncontrollable electromagnetic environment in urban scenarios,the current traditional communication system architecture can no longer meet the communication and perception needs in Vehicle-to-Infrastructure(V2I)system.In response to this,this paper considers adding a Reconfigurable Intelligent Surface(RIS)to traditional V2I system,combining it with ISAC technology,and constructing a new passive perception model under multipath scenarios.Then,it deeply analyzes the optimization of the anti-multipath performance of the RIS-assisted ISAC communication system under a new passive perception model.A large-scale RIS unit optimization grouping method is proposed,which allows some units to participate in signal reflection,and then compares the system performance of the large-scale RIS after unit optimization grouping with the small-scale RIS with the same number of units.Simulation results show that the optimized design of large-scale RIS achieves a signal transmission efficiency of about 1.5 bit/s higher than that of small-scale RIS,effectively reducing the channel estimation overhead while improving the system signal transmission performance.
分 类 号:TN929.52[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.55.240