油藏动态分析场景大模型构建与初步应用  被引量:1

Construction and preliminary application of large language model for reservoir performance analysis

在线阅读下载全文

作  者:潘焕泉 刘剑桥 龚斌 朱艺亨 白军辉 黄虎[1] 方政保 敬洪彬 刘琛 匡铁 兰玉波 王天智[3] 谢添 程名哲[1] 秦彬[1] 沈榆将 PAN Huanquan;LIU Jianqiao;GONG Bin;ZHU Yiheng;BAI Junhui;HUANG Hu;FANG Zhengbao;JING Hongbin;LIU Chen;KUANG Tie;LAN Yubo;WANG Tianzhi;XIE Tian;CHENG Mingzhe;QIN Bin;SHEN Yujiang(School of Earth Resources of China University of Geosciences,Wuhan 430074,China;Heilongjiang Key Laboratory of Reservoir Physics&Fluid Mechanics in Porous Medium,Daqing 163712,China;Exploration and Development Research Institute of PetroChina Daqing Oilfield Co.,Ltd.,Daqing 163712,China)

机构地区:[1]中国地质大学(武汉)资源学院,武汉430074 [2]黑龙江省油层物理与渗流力学重点实验室,大庆163712 [3]中国石油大庆油田有限责任公司勘探开发研究院,大庆163712

出  处:《石油勘探与开发》2024年第5期1175-1182,共8页Petroleum Exploration and Development

基  金:中华人民共和国科学技术部国家级人才专项科研基金(20230240011);中国地质大学(武汉)“地大学者”人才岗位科研启动经费(162301192687)。

摘  要:针对目前油藏动态分析中井史数据检索与分析、连井剖面绘制、开发生产关键技术指标计算、油藏复杂问题的措施建议等方面的智能化需求,采用增量预训练、指令微调和功能子系统耦合3个步骤构建油藏动态分析场景大模型,提出了基于命名实体识别技术、工具调用技术、Text-to-SQL(自然语言转换成结构化查询语言)技术微调的功能子系统及其高效耦合方法,将人工智能大模型运用到油藏动态分析领域。测试了特征提取模型、工具分类模型、数据检索模型、分析建议模型的准确性,结果表明这些模型在油藏动态分析的各个关键环节均展现出了良好的性能。最后以大庆油田PK3区块部分注采井组为例,测试验证了油藏动态分析场景大模型在辅助油藏工程师进行油藏动态分析方面具有的运用价值和潜力,为大模型在油藏动态分析中的运用提供了较好的技术支持。A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.

关 键 词:油藏动态分析 人工智能大模型 场景大模型 增量预训练 指令微调 系统耦合 实体识别 工具调用 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象