检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qian Zhang Jie Wang Tian-Xiang Lu Ran Huang Franco Nori Hui Jing
机构地区:[1]Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications,Hunan Normal University,Changsha 410081,China [2]Theoretical Quantum Physics Laboratory,Cluster for Pioneering Research,RIKEN,Wako-shi 351-0198,Japan [3]Center for Quantum Computing,RIKEN,Wako-shi 351-0198,Japan [4]Department of Physics,University of Michigan,Ann Arbor 48109-1040,USA [5]College of Physics and Electronic Information,Gannan Normal University,Ganzhou 341000,China [6]Academy for Quantum Science and Technology,Zhengzhou University of Light Industry,Zhengzhou 450002,China
出 处:《Science China(Physics,Mechanics & Astronomy)》2024年第10期23-32,共10页中国科学:物理学、力学、天文学(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.11935006);supported by the National Natural Science Foundation of China(Grant No.12205054);the Science and Technology Innovation Program of Hunan Province(Grant No.2020RC4047);National Key R&D Program of China(Grant No.2024YFE0102400);Hunan Provincial Major Scitech Program(Grant No.2023ZJ1010);Ph.D.Research Foundation(BSJJ202122);supported by the Japan Society for the Promotion of Science(JSPS)Postdoctoral Fellowships for Research in Japan(No.P22018);Nippon Telegraph and Telephone Corporation(NTT)Research,the Japan Science and Technology Agency(JST)(via the Quantum Leap Flagship Program(Q-LEAP),and the Moonshot R&D(Grant No.JPMJMS2061));the Asian Office of Aerospace Research and Development(AOARD)(Grant No.FA2386-20-1-4069);the Office of Naval Research(ONR)Global(Grant No.N62909-23-1-2074)。
摘 要:Cavity magnomechanics,exhibiting remarkable experimental tunability,rich magnonic nonlinearities,and compatibility with various quantum systems,has witnessed considerable advances in recent years.However,the potential benefits of using cavity magnomechanical(CMM)systems in further improving the performance of quantum-enhanced sensing for weak forces remain largely unexplored.Here we show that,by squeezing the magnons,the performance of a quantum CMM sensor can be significantly enhanced beyond the standard quantum limit(SQL).We find that,for comparable parameters,two orders of magnitude enhancement in the force sensitivity can be achieved in comparison with the case without magnon squeezing.Moreover,we obtain the optimal parameter regimes of homodyne angle for minimizing the added quantum noise.Our findings provide a promising approach for highly tunable and compatible quantum force sensing using hybrid CMM devices,with potential applications ranging from quantum precision measurements to quantum information processing.
关 键 词:quantum force sensing cavity magnomechanics magnon Kerr effect
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.216.188