检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯磊 陈艺中 许招芬 谭静雯 高庆生 Lei Feng;Yizhong Chen;Zhaofen Xu;Jingwen Tan;Qingsheng Gao(College of Chemistry and Materials Science,Jinan University,Guangzhou 510632,China)
出 处:《科学通报》2024年第25期3715-3727,共13页Chinese Science Bulletin
基 金:国家自然科学基金(22175077);广东省高校创新团队项目(2021KCXTD009)资助。
摘 要:高熵材料在电催化应用中引起极大的关注.然而,高熵材料的合理设计及制造与合成技术密切相关.与传统合成技术不同,超快速高温合成策略利用特殊的动力学条件,制备具有非热力学平衡结构的高熵电催化剂,并获得优异的催化性能.本文首先阐述了高熵材料的熵理论,并介绍了焦耳快速加热、微波辅助技术、激光烧蚀与喷雾快速热解等一系列超快速高温合成技术,比较了这些合成技术的机理与优缺点.其次,全面分析了高熵合金、高熵氧化物、高熵碳化物及高熵硫化物的亚稳态结构与电催化性能的内在关联,以此证明超快速高温合成策略的电催化应用潜力.最后,对超快速高温合成策略的未来技术发展方向进行了展望,并指出了其在制备高熵材料过程中存在的挑战.本文对合成高性能电催化剂具有重要意义.Electrocatalysts play a pivotal role in advancing and leveraging new energy sources, exerting significant influence on the efficacy of energy storage and conversion processes. High-entropy materials(HEMs), encompassing entities like highentropy alloys(HEAs), high-entropy oxides(HEOs), high-entropy carbides(HECs), and high-entropy metal sulfides(HESs), have garnered substantial attention as electrocatalysts in various electrochemical applications. HEMs offer several advantages as innovative electrocatalysts, including their high-entropy nature, slow diffusion characteristics, lattice distortion, and cocktail effects. These attributes confer unique atomic configurations and electronic structures, thereby enhancing electrocatalytic performance. Relative to conventional materials, HEMs furnish a greater abundance of active sites in pivotal reactions such as hydrogen evolution(HER), oxygen reduction(ORR), oxygen evolution(OER), and carbon dioxide reduction(CO2RR). Furthermore, they facilitate synergistic effects that optimize electronic configurations,thus enhancing catalytic efficiency.However, traditional synthesis methods for high-entropy materials face significant limitations, often yielding heterogeneous or polycrystalline materials primarily dictated by thermodynamics. These constraints severely restrict their potential applications in electrocatalysis. To overcome these challenges, ultrafast high-temperature synthesis techniques like Joule heating, laser ablation, and microwave assistance have been employed in the development of highentropy electrocatalysts. These advanced methods capitalize on specific kinetic conditions to address issues such as the immiscibility of metal elements and the uncontrollable migration or aggregation of atoms. Consequently, they facilitate the creation of various defects, yielding high-entropy electrocatalysts with non-equilibrium structures. Such structures play a pivotal role in influencing the adsorption and activation of key intermediates in electrochemical reactions, thereby e
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.83.240