检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶志坚[1] 王菁[1] 吴越[1] 陈建政[1] YE Zhijian;WANG Jing;WU Yue;CHEN Jianzheng(Southwest Jiaotong University,State Key Laboratory of Rail Transit Vehicle System)
机构地区:[1]西南交通大学,轨道交通运载系统全国重点实验室
出 处:《仪表技术与传感器》2024年第9期99-105,共7页Instrument Technique and Sensor
基 金:国家自然科学基金项目(U21A20167)。
摘 要:针对轨道交通日常运维中钢轨廓形自动化检测识别率不高的情况,提出了一种基于几何描述符和支持向量机(SVM)的高精度钢轨廓形在线识别算法。利用结构光传感器对钢轨廓形数据进行采集,采用几何去噪算法对廓形进行离群点剔除和重采样预处理。通过廓形几何描述符对不同类别钢轨廓形进行特征提取,制作廓形特征数据集用于训练SVM。采用遗传算法(GA)对SVM模型参数进行优化选取。将优化训练后的SVM模型用于钢轨廓形检测并和传统廓形识别方法进行对比。结果表明:提出的采用几何描述符的GA-SVM模型平均准确率达到99.62%,单帧廓形识别用时6.43 ms,能有效提升廓形识别准确率与高速性,满足轨道车辆在线检测的需求,并为轨道自动化检测提供了理论和技术支撑。Aiming at the low recognition rate of rail profile automatic detection in daily rail transit operation and maintenance,a high-precision rail profile online recognition algorithm based on geometric descriptors and support vector machine(SVM)was proposed.Structure light sensor was used to collect rail profile data,and geometric denoising algorithm was used to remove outliers and resampling the profile.The feature extraction of different types of rail profiles was carried out through the profile geometric descriptors,and the profile feature dataset was made for SVM training.Genetic algorithm(GA)was used to optimize the parameters of SVM model.The optimized SVM model was used for rail profile detection and compared with the traditional profile recognition method.The results show that the proposed GA-SVM model using geometric descriptors can achieve an average accuracy rate of 99.62%and a single-frame contour recognition time of 6.43 ms.It can effectively improve the accuracy and high speed of profile recognition,meet the needs of online detection of rail vehicles,and provide theoretical and technical support for automated track detection.
关 键 词:轨道自动化检测 钢轨廓形 几何描述符 遗传算法 支持向量机
分 类 号:U216.3[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.143.199