检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周小琴 蔡鸿宇 石进[1] 卢明欣[1,2] Zhou Xiaoqin;Cai Hongyu;Shi Jin;Lu Mingxin(School of Information Management,Nanjing University,Nanjing 210023;Nanjing University(Suzhou)High-tech Institute,Suzhou 215127)
机构地区:[1]南京大学信息管理学院,南京210023 [2]南京大学(苏州)高新技术研究院,苏州215127
出 处:《情报杂志》2024年第10期176-186,共11页Journal of Intelligence
基 金:国家社会科学基金项目“面向国家安全的科技竞争情报态势感知研究”(编号:21BTQ012)研究成果。
摘 要:[研究目的]在知识产权强国战略背景下,存在着专利数量与质量不匹配、技术转化率较低的困境,评估早期专利价值对高价值专利培育工程和专利技术转化具有重要意义。[研究方法]提出一种融合专利SAO网络特征和文本特征的早期专利价值评估方法。首先,从专利摘要和标题中抽取主体-行为-客体(SAO)结构。其次,用社会网络分析法挖掘专利SAO网络的核心组件,得到专利SAO网络中心性特征。然后,将SAO结构序列文本输入Doc2Vec模型,得到专利SAO文本特征。最后,融合专利基础特征和SAO特征,构建基于AutoGluon自动机器学习框架的早期专利价值评估模型。[研究结论]以人工智能产业专利为例进行实证研究,实验结果表明引入专利SAO特征后,模型的准确率、召回率和F1值相比基准模型均提高了2%~5%,证明了专利SAO特征在识别早期高价值专利中的有效性。[Research purpose]In the context of the strategy of strengthening China through intellectual property rights,there is a dilemma that patent quantity increases but quality decreases,and technology transfer rate is low.Evaluating the value of early patents is of great significance for the cultivation of high-value patents and the transfer of patent technologies.[Research method]We propose an early patent value assessment method that integrates features from the patent SAO(Subject-Action-Object)network and text.Firstly,we extract the SAO structures from patent abstracts and titles.Secondly,we employ social network analysis to identify the core components of the patent SAO network and obtain centrality features.Next,we input the SAO structure sequence text into the Doc2Vec model to derive the patent SAO text features.Finally,we combine the basic patent features with the SAO features to construct an early patent value assessment model based on the AutoGluon automated machine learning framework.[Research conclusion]Using patents in the field of artificial intelligence industry as an example,an empirical research is carried out.Experimental results demonstrate that the introduction of patent SAO features improves the accuracy,recall,and F1 score of the model by 2-5%compared to the baseline model,which confirms the effectiveness of patent SAO features in identifying early-stage high-value patents.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38