基于机器学习的伯努利夹持器气体流动特性研究  

RESEARCH ON GAS FLOW CHARACTERISTICS OF BERNOULLI GRIPPER BASED ON MACHINE LEARNING

在线阅读下载全文

作  者:王洪悦 刘延芳[1,2] 杜德嵩[1] 齐乃明 Wang Hongyue;Liu Yanfang;Du Desong;Qi Naiming(School of Astronautics,Harbin Institute of Technology,Harbin 150001,China;Suzhou Research Institute,Harbin Institute of Technology,Suzhou 215104,Jiangsu,China)

机构地区:[1]哈尔滨工业大学航天学院,哈尔滨150001 [2]哈尔滨工业大学苏州研究院,江苏苏州215104

出  处:《力学学报》2024年第9期2565-2578,共14页Chinese Journal of Theoretical and Applied Mechanics

基  金:国家重点研发基金资助项目(2022YFB3902701).

摘  要:电子元器件的非接触输运是实现其全自动化生产的瓶颈之一.伯努利夹持器作为一种非接触式气动夹持装置被广泛应用于工业中物体的抓取、定位和运输,而适用于mm级别半导体器件清洁无损运输的微型伯努利夹持器还鲜有研究.文章采用SST k-ω并结合层流/湍流转捩γ模型,探讨了夹持间隙、喷嘴直径、夹持器尺寸以及供气压力对吸持力和气体消耗率的影响,并分析了其内部的气体流动特性变化;以数值模拟获得的数百个数据作为数据集,利用机器学习方法建立6个夹持器性能预测模型,并结合相应的智能算法对机器学习模型的超参数进行调优,进行特征相关性分析,并比较了各机器学习模型的预测效果.结果表明,吸持力受多因素综合影响:其随供气压力、夹持器尺寸的增大而增大,随夹持间隙及喷嘴直径的增大先增大后减小;气体消耗率随供气压力、夹持间隙以及喷嘴直径的增大而增大.最佳的机器学习模型对吸持力和气体消耗率的预测准确率评价指标R^(2)(越接近1越准确)分别在0.95和0.97左右,预测了不同夹持器尺寸下的最大吸持力及所对应的夹持器参数,与数值结果进行比较其误差小于5%,具有良好的预测能力.此外发现,为保证夹持器低G-F因子工作(产生单位吸持力所需的气体消耗率g/s·N)其供气压力和夹持间隙应分别控制在3~5 bar和0.045~0.08 mm之间,模型可用于多参数影响下的伯努利夹持器吸持力和气体消耗率的预测.结果可为微型伯努利夹持器设计及结构参数优化提供参考.The non-contact transport of electronic components is one of the bottlenecks in achieving its fully automated production.Bernoulli gripper,a non-contact pneumatic gripper device,is widely used for gripping,positioning,and transporting objects in industry.However,the miniature Bernoulli gripper,which is used for clean and non-destructive transport of millimeter-scale semiconductor devices,has rarely been studied.In this study,combining the SST k-ωand laminar/turbulent turningγmodels,the effects of the gripping gap,nozzle diameter,gripper size,and gas supply pressure on the suction force and gas consumption rate are first explored and the variation of the gas flow characteristics inside them is analysed.Then,based on hundreds of data obtained from numerical simulations as a dataset,six gripper performance prediction models were established using machine learning methods,and the hyper-parameters of the machine learning models were optimised by combining them with the corresponding intelligent algorithms.Finally,feature correlation analysis and comparison of the prediction effect of each machine learning model were conducted.The results show that the holding force is influenced by multiple factors:it grows with the gas supply pressure and the gripper size,while it initially rises and then declines with the gripping gap and the nozzle diameter;The gas consumption rate grows with the gas supply pressure,the gripping gap and the nozzle diameter.The optimal machine learning model has good prediction ability for holding force and gas consumption rate with accuracy evaluation metrics R^(2) around 0.95 and 0.97(the closer to 1 the more accurate),respectively.The model prediction results for maximum holding force and corresponding gripper parameters at different gripper sizes have less than 5%error compared to the numerical simulation results.In addition,it was found that the gas supply pressure and the clamping gap should be controlled at 3~5 bar and 0.045~0.08 mm,respectively,for low G-F factor operation of the gripper(g

关 键 词:伯努利夹持器 机器学习 层流/湍流转捩 吸持力 气体消耗率 

分 类 号:O368[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象