基于物联网+AI图像识别的智能垃圾分类系统研究  

Research on Intelligent Garbage Classification System Based on Internet of Things+AI Image Recognition

在线阅读下载全文

作  者:徐克旭 XU Kexu(Zhejiang Intermodal Zhihui Technology Co.,Ltd.,Hangzhou 311100,China)

机构地区:[1]浙江联运知慧科技有限公司,杭州311100

出  处:《移动信息》2024年第9期240-242,共3页Mobile Information

摘  要:当前,垃圾分类中的误投与效率问题引人深思,文中对此进行了研究.首先,基于深度学习的图像识别技术已被用于研究智能垃圾分类系统,为了提升系统对各种垃圾的识别准确率,大量垃圾图像被用于智能识别算法的训练.同时,物联网技术被引入垃圾分类工作,以实时处理垃圾投放数据.研究成果表明,该融合类型的垃圾分类系统能有效提升垃圾分类工作的准确率与效率,图像识别准确率高达96%,作业效率提升了32%,降低了人力成本与管理难度.此外,这种系统还有利于提升公众的环保意识,推动垃圾分类.研究为物联网和AI技术在环保领域的应用提供了新的思路和参考,对我国环保和垃圾分类工作有着重大的理论和实践意义.Currently,the issues of misdelivery and efficiency in garbage classification are thought-provoking,and this paper has conducted research on them.Firstly,image recognition technology based on deep learning has been used to study intelligent garbage classification systems.In order to improve the accuracy of the system in recognizing various types of garbage,a large number of garbage images are used for training intelligent recognition algorithms.At the same time,IoT technology has been introduced into garbage classification work to process real-time garbage disposal data.The research results show that this fusion type of garbage classification system can effectively improve the accuracy and efficiency of garbage classification work,with an image recognition accuracy of up to 96%and a 32%increase in operational efficiency,reducing labor costs and management difficulties.In addition,this system is also beneficial for enhancing public environmental awareness and promoting garbage classification.The research provides new ideas and references for the application of IoT and AI technology in the field of environmental protection,which has significant theoretical and practical significance for China̓s environmental protection and waste classification work.

关 键 词:物联网技术 AI图像识别 深度学习 智能垃圾分类 环保应用 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象