检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:司周永 王军号[1] SI Zhouyong;WANG Junhao(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
机构地区:[1]安徽理工大学计算机科学与工程学院,安徽淮南232001
出 处:《阜阳师范大学学报(自然科学版)》2024年第2期30-37,共8页Journal of Fuyang Normal University:Natural Science
基 金:国家自然科学基金项目(61300001)资助。
摘 要:为了解决传统GAN(Generative Adversarial Network)进行图像风格迁移受到成对数据集的限制,以及CycleGAN学习高级特征时表现不佳和训练过慢的问题,本文采用ModileNetV2-CycleGAN模型进行图像风格迁移,并引入多尺度结构相似性指数(multi-scale structural similarity,MS-SSIM)作为惩罚项保留风格图片的特征,来提高特征学习的效果,从而提高风格化图片质量。采用客观结构相似性SSIM与峰值信噪比PSNR和主观投票作为评估指标,对迁移后的效果进行评估,实验结果表明了本文改进算法的有效性。In order to solve the problem of the traditional Generative Adversarial Network image-style transfer limited to the pairing data set,and the problems of poor performance and slow training when CycleGAN learn advanced features,the paper uses the ModileNetv2-CycleGAN model for image style transfer,and introduces multiscale structural similarity index loss as a characteristic of punishment items retains style pictures to improve the effect of characteristic learning,thereby improving the quality of style pictures.Objective structure similar to SSIM and peak signal-to-noise ratio PSNR and subjective voting as evaluation indicators are adopted to evaluate the effect of transfer.The experimental results show that using ModileNetv2-CycleGAN and MS-SSIM Loss can improve style migration quality and have better visual effects.
关 键 词:图像风格迁移 循环一致性生成对抗网络 轻量级卷积神经网络 深度残差网络 多尺度结构相似性指数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222