检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈子任 张硕[2] 徐丛剑 CHEN Zi-ren;ZHANG Shuo;XU Cong-jian(Department of Integrated Traditional Chinese and Western Medicine,Obstetrics and Gynecology Hospital,Fudan University,Shanghai 200011,China;Department of Reproductive and Endocrinology,Obstetrics and Gynecology Hospital,Fudan University,Shanghai 200011,China)
机构地区:[1]复旦大学附属妇产科医院中西医结合科,上海200011 [2]复旦大学附属妇产科医院生殖与内分泌科,上海200011
出 处:《复旦学报(医学版)》2024年第5期795-799,共5页Fudan University Journal of Medical Sciences
摘 要:目的探究中药温、凉、寒、热、平5种药性分类模型的构建及验证。方法选择小鼠服用不同性质中药后的尿液标本作为研究对象,利用拉曼光谱相关技术进行检测。将得到的数据集分为训练集和测试集,用随机森林、极端梯度提升、支持向量机、逻辑回归4种机器学习方法构建分类模型,使用精确率、召回率、F1分数以及准确率来评估模型性能。结果本研究共收集到4888组光谱,其中3910组(80%)光谱数据用以构建模型,其余978组(20%)光谱数据用以测试模型性能。随机森林模型、极端梯度提升模型、支持向量机模型和逻辑回归模型的准确率分别为92%、87%、83%和75%。参与分类权重最高的拉曼位移分别为872、1012、1108、1190和1668 cm-1。结论拉曼光谱结合机器学习算法可以用于中药5种药性的分类,为中药药性分类提供新的方法,其中随机森林模型效果最佳。Objective To explore the construction and verification of the classification model for the five properties of traditional Chinese medicine:warm,cool,cold,hot,and neutral.Methods Urine samples of mice after taking Chinese medicine of different properties were selected as research objects,and Raman spectroscopy-related technology was used for detection.The obtained data set was classified into training set and test set,and the classification model was constructed using four machine learning methods:random forest,extreme gradient boosting,support vector machine,and logistic regression.The model performance was evaluated using precision,recall,F1 score,and accuracy.Results A total of 4888 sets of spectra were collected in this study,of which 80%,totaling 3910 sets of spectral data,were used to build the model,and the remaining 20%,totaling 978 sets of spectral data,were used to test model performance.The accuracy of the random forest model was 92%,the extreme gradient boosting model was 87%,the support vector machine model was 83%,and the logistic regression model was 75%.The Raman shifts with the highest classification weights were 872,1012,1108,1190 and 1668 cm-1.Conclusion Raman spectroscopy combined with machine learning algorithms can be used to classify the five medicinal properties of traditional Chinese medicine,among which the random forest model has the best effect.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200