Sunspot Group Detection and Classification by Dual Stream Convolutional Neural Network Method  

在线阅读下载全文

作  者:Nyasha Mariam Mkwanda Weixin Tian Junlin Li 

机构地区:[1]Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering,China Three Gorges University,Yichang 443002,China [2]College of Computer and Information Technology,China Three Gorges University,Yichang 443002,China

出  处:《Research in Astronomy and Astrophysics》2024年第9期248-259,共12页天文和天体物理学研究(英文版)

摘  要:The automatic detection and analysis of sunspots play a crucial role in understanding solar dynamics and predicting space weather events.This paper proposes a novel method for sunspot group detection and classification called the dual stream Convolutional Neural Network with Attention Mechanism(DSCNN-AM).The network consists of two parallel streams each processing different input data allowing for joint processing of spatial and temporal information while classifying sunspots.It takes in the white light images as well as the corresponding magnetic images that reveal both the optical and magnetic features of sunspots.The extracted features are then fused and processed by fully connected layers to perform detection and classification.The attention mechanism is further integrated to address the“edge dimming”problem which improves the model’s ability to handle sunspots near the edge of the solar disk.The network is trained and tested on the SOLAR-STORM1 data set.The results demonstrate that the DSCNN-AM achieves superior performance compared to existing methods,with a total accuracy exceeding 90%.

关 键 词:Sun:magnetic fields Sun:flares (Sun:)sunspots DSCNN Attention mechanism Edge dimming 

分 类 号:P182.2[天文地球—天文学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象